
Adaptive Reward for CAV Action Planning using Monte Carlo Tree
Search

Dhruvkumar Patel1 and Rym Zalila-Wenkstern2

Abstract— Cooperative action planning for Connected and
Autonomous Vehicles (CAVs) in an emergency scenario is an
important task in the autonomous driving domain. Reinforce-
ment learning algorithms such as Monte Carlo Tree Search
(MCTS) have popularly been used to solve this problem with
some success. MCTS rely on performing many simulations of
CAV actions to learn expected reward values for CAV actions.
A refined reward function design is a necessary precondition for
better success rates in MCTS. Traditionally, predefined reward
functions with fixed reward parameters are used in all CAVs
scenarios by most MCTS-based algorithms. This paper presents
a novel Monte Carlo Tree Search (MCTS) based algorithm
that dynamically modifies the reward function parameters to
encourage or discourage particular CAV actions. Our proposed
algorithm with a dynamic reward function significantly im-
proves the reliability of MCTS having a fixed reward function.
We evaluate the proposed algorithm in a large-scale multi-
agent-based traffic simulation system. Experimental results
show that our algorithm significantly improves upon current
state-of-the-art centralized and decentralized algorithms.

I. INTRODUCTION

Connected and Autonomous Vehicles (CAVs) in a coalition
continuously exchange information and cooperate to make
rewarding decisions for the coalition [1]. In case a misbe-
having vehicle is detected by one of the coalition’s CAVs,
the vehicle alerts all coalition members about the emergency.
The coalition members must cooperatively plan and find non-
conflicting actions to avoid collisions with the misbehaving
vehicle when possible.

CAV cooperative action planning approaches generally fall
into three main categories: centralized, decentralized, and
hierarchical. In centralized approaches, each CAV sends its
state information to a central computer. The central computer
solves the cooperative action planning problem formulated
as a global optimization problem. Centralized approaches
generally find optimal solutions but scale poorly when the
number of CAVs becomes large [2].

Decentralized approaches formulate the CAV cooperative
action planning problem as a Multi-agent Markov Decision
Process (MMDP). Given that a CAV’s state space can be
very large [3], classical reinforcement learning techniques
such as value iteration do not provide efficient solutions. A
game theory-based technique called Monte Carlo Tree Search
(MCTS) [4] has been successful at addressing problems with
large state spaces such as the traditional Chinese game,

1Dhruvkumar Patel is with Department of Computer Science, Univer-
sity of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas 75080.
dhruv@utdallas.edu

2Rym Zalila-Wenkstern is with Department of Computer Science, Uni-
versity of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas 75080.
rymw@utdallas.edu

Go [5]. MCTS has also been applied to solve MMDPs for
the CAV action planning problem [6]–[8] to some success.
Although MCTS-based approaches can tackle problems with
large state-spaces, they scale poorly in the number of CAVs.
This is due to the fact that the MCTS tree size grows
exponentially with the number of CAVs.

In [9], we proposed Approximate Simultaneous Move
(ASM), an MCTS-based algorithm that scales with the
number of CAVs. ASM follows a hierarchical, two-step
approach. First, each CAV computes its prioritized actions
in a decentralized manner. Then the final action selection for
CAVs is performed by the coalition leader. ASM increases
the scalability significantly compared to other MCTS-based
approaches.

MCTS-based approaches rely on Monte Carlo simulations
of CAV actions to learn the expected reward value. During
an MCTS simulation of CAV actions, a predefined reward
function is used to compute the reward value of simulating a
particular CAV action. The design of the reward function and
selection of reward function parameters significantly affect
the MCTS algorithm’s ability to find a non-colliding solution
in a given CAV situation. However, little attention has been
granted to the reward function design in selecting reward
parameters for different CAV situations.

In this paper, we present AdaptIve Reward for CAVs
Action Planning (AirCap), an MCTS-based algorithm that
changes the reward function weights dynamically during
MCTS iteration simulations. To achieve this, we propose to
update the reward function weights for each action, based
on the resultant coalition state of that action. AirCap is able
to significantly improve upon ASM [9], which uses fixed
reward function weights, and performs much better than the
state-of-the-art centralized and decentralized algorithms.

This paper is organized as follows: In the next section, we
review related works. In Sections III and IV, we formulate
the problem and discuss the approach. In Section V, we
present the AirCap algorithm and in Section VI, we present
a comparative analysis of AirCap with ASM and other state-
of-the-art centralized and decentralized algorithms.

II. RELATED WORKS

Decision making approaches for the CAVs action planning
problem can be classified as centralized, decentralized and
hierarchical. In centralized approaches, the action planning
problem for a group of CAVs is formulated as a single global
optimization problem and is solved by a centralized com-
puter. In decentralized and hierarchical approaches, CAVs
action planning problem is generally formulated as a form of

2021 IEEE Intelligent Transportation Systems Conference (ITSC)
Indianapolis, USA. September 19-21, 2021

978-1-7281-9142-3/21/$31.00 ©2021 IEEE 1105

20
21

 IE
EE

 In
te

rn
at

io
na

l I
nt

el
lig

en
t T

ra
ns

po
rt

at
io

n
Sy

st
em

s C
on

fe
re

nc
e

(IT
SC

) |
 9

78
-1

-7
28

1-
91

42
-3

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IT
SC

48
97

8.
20

21
.9

56
46

88

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 27,2023 at 18:09:29 UTC from IEEE Xplore. Restrictions apply.

Multi-agent Markov Decision Process (MMDP) and is solved
by each CAV independently. In hierarchical approaches, there
is an additional step where a CAV coalition leader checks
each CAV’s individual solutions and selects the best solution
for the coalition.

A. Centralized approaches

Most conventional optimization-based approaches for
CAVs action planning fall in this category. The proposed
solutions differ in their optimization method’s selection and
definition. [10] uses Mixed Integer Linear Programming
(MILP) with the collision constraints. [11] uses Mixed
Integer Quadratic Programming (MIQP) with the collision
constraints. [12] uses a graph theory based optimization
approach. [13] uses pre-defined maneuver templates for
collaborative collision avoidance. [14] formulates the prob-
lem as a centralized Quadratic Programming (QP) problem,
which is decomposed using alternating direction of multi-
pliers. [15] proposes to formulate the trajectory generation
problem as an integer programming problem. The integer
programming problem is solved using a SAT solver, which
provides the formal guarantee for collision avoidance. Two
methods are introduced to reduce the computation time. In
the grouping method, vehicles are grouped into disjoint sets
of interacting vehicles and the optimization is performed for
each set separately. In the collision check point method, the
optimization is carried out less frequently. [15] uses state-of-
the-art centralized optimization approach as the computation
time reduction techniques reduce the computation time by
98%.

Centralized approaches generally provide optimal solu-
tions to the formulated optimization problems, however they
are computationally expensive and not scalable.

B. Decentralized approaches

In decentralized approaches, the CAVs action planning prob-
lem is commonly formulated as a Multi-agent Markov Deci-
sion Process (MMDP) and solved using reinforcement learn-
ing methods. In this category, each CAV uses an individual
reward function for the proposed reinforcement learning
approach. Additionally, each CAV has a choice when it
comes to the level of cooperation with other CAVs. In
[6], authors propose a Monte Carlo Tree Search (MCTS)
based approach with an individual multi-objective reward
function. Each CAV constructs a cooperative reward function
that specifies the level of cooperation with other CAVs and
defines the optimized utility. The approach was evaluated
on scenarios involving up to three cooperative vehicles. [7]
proposes an MCTS-based approach with an individual multi-
objective reward function and CAV macro-actions. A similar
approach for cooperative reward function is used to define
the optimized utility. Additionally, reward shaping is used
in the reward function that pushes the CAV state towards
desired velocity and desired lane index. The evaluation is
performed against scenarios involving up to three vehicles.
[8] proposes DeCoC-MCTS, a Decentralized Cooperative

Continuous MCTS-based approach with an individual multi-
objective reward function. This method proposes to use con-
tinuous action-spaces for CAVs to generate flexible trajecto-
ries. Cooperative reward function is constructed by each CAV
to define the optimized utility. The evaluation is performed
against scenarios involving up to three vehicles.

The main drawback of decentralized approaches that have
individual reward with social choice utility is that the colli-
sion avoidance is only guaranteed when all CAVs reach Nash
equilibirium, i.e., they all find the same solution. Another
drawback is scalability in the number of agents. [8] is
currently considered the state-of-the-art in decentralized CAV
action planning. It is the only MCTS-based approach to have
used continuous action spaces for CAV actions, allowing
flexible trajectories for CAVs.

C. Hierarchical approach

In [9], we have proposed Approximate Simultaneous Move
(ASM), an MCTS-based algorithm that reduces the MCTS
tree size exponentially to improve scalability . Each CAV first
executes ASM to define individual, prioritized action plans
up to the planning horizon. Each CAV then sends its priori-
tized action plans to the coalition leader. The coalition leader
chooses the final action plan for each CAV that optimizes the
team utility. In ASM, each CAV uses an individual reward
function to rank its actions, but the final action selection is
performed by the coalition leader to optimize the team utility.
All previously proposed decentralized and hierarchical ap-
proaches use a fixed weights multi-objective reward function
in all coalition configurations. In this paper, we present
AdaptIve Reward for CAVs Action Planning (AirCap), a
novel MCTS-based algorithm with an adaptive reward func-
tion. Each CAV uses different reward function parameters
for actions that lead to different coalition states. The unique
contributions of our approach are the following:
• AirCap is based on a novel idea of updating the weights

of the CAVs reward functions dynamically.
• AirCap was implemented and evaluated in MATISSE, a

large scale multi-agent based traffic simulation system.
• Extensive experiments show that AirCap outperforms

ASM [9], as well as the state-of-the-art centralized [15]
and decentralized [8] algorithms.

III. MODEL DEFINITION

We use the terms agent and CAV interchangeably in the
remainder of this paper. We assume that a coalition C of n
CAVs is navigating on a straight highway. A CAV coalition is
a group of CAVs that drive together for information sharing
and mutual support. In the coalition, one CAV is chosen as
a coalition leader and is responsible for coalition manage-
ment. We adopt coalition formation and leader assignment
algorithm from our previous work [1]. Based on current
CAV technologies, we assume that each CAV is equipped
with perception sensors such as ultrasonic sensors, radars
and Lidar which provide short (i.e., less than 2 meters) and
long range (i.e., up to 200 meters) sensing data. CAVs in a
coalition use V2V communication to continuously exchange

1106

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 27,2023 at 18:09:29 UTC from IEEE Xplore. Restrictions apply.

information with each other. The information exchanged
depends on the CAV role in the coalition (i.e., members or
a leader).

Each CAV in the coalition is defined by its ID i ∈
C. A CAV i’s state is defined by a state vector si =
[pi, vi, li, θi, xi] where pi is the CAV’s position, vi is its
velocity, li is its lane, θi is its orientation, and xi is the
size of the vehicle containing length and width values. The
coalition joint state is defined as s = {si}i∈C . Table I lists
the individual CAV action set. A mitigation action plan αi

h

is a sequence of h consecutive actions that is defined by a
CAV i in case of perceived danger or warning related to a
misbehaving vehicle. It is defined as αi

h = {aitk}
h
k=1, where

tk is the start time of the execution of the mitigation plan’s
k’th action. h is known as the planning horizon. An action
is performed over a duration denoted ∆t.

Action Definition Precondition

maintain Maintain the current velocity -

accel
Accelerate with a fixed acceler-
ation value αacc

Speed shouldn’t ex-
ceed maximum speed

decel
Decelerate with a fixed deceler-
ation value αdec

Speed shouldn’t be
zero

cll
Change lane to the left lane of
the current lane

Currently not in the
left most lane

clr
Change lane to the right lane of
the current lane

Currently not in the
right most lane

TABLE I: CAV Actions

We formulate the CAVs cooperative action planning prob-
lem in an emergency situation as a Multi-agent Markov De-
cision Process (MMDP) [16]. When a misbehaving vehicle
is detected by one of the CAVs, each CAV in the coalition
formulates its action planning problem as an MMDP with its
individual reward function to compute individual prioritized
mitigation action plans. The coalition leader uses these indi-
vidual action plans to optimize the team utility. An MMDP
for the CAV action planning problem is defined by a tuple
〈C, S,A, T,R〉, where
• C is a coalition of n CAVs.
• S represents the joint state space for the CAVs in C.
S = ×Si where Si is the state space for CAV i.

• A represents the joint action space for the actions of
CAVs in C. A = ×Ai where Ai is the set of actions
that i can perform.

• T : S × A × S → [0, 1] is the transition function
where T (s, a, s′) specifies the probability of the system
transitioning to state s′ when performing joint action a
in state s.

• R : S × A × S → R is the reward function with
R(s, a, s′) specifying the reward received when execut-
ing joint action a in state s and transitioning to the state
s′.

The solution to an MMDP is specified by state-action val-
ues Q(si, ai) for each state-action pair. Q(si, ai) represents
the expected reward if CAV i performs the action ai in the
state si.

IV. APPROACH

In our approach, in the event that a misbehaving vehicle m is
detected, each CAV i independently solves MMDP using the
communicated joint state s to derive all possible mitigation
action plans for horizon h and estimate approximately opti-
mal Q∗ values for the actions in derived action plans. Each
CAV then ranks these plans using the estimated Q∗ values.
Each CAV i sends its ranked plans to the coalition leader
using V2V communication. The coalition leader analyzes
the prioritized mitigation action plans, and selects an action
plan αi

h for each CAV i that optimizes the team utility. We
propose an algorithm based on Monte Carlo Tree Search
(MCTS) to solve an MMDP at individual CAV level.

A. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a tree-search based
reinforcement learning algorithm used to solve an MDP.
It performs several Monte Carlo simulations and uses the
simulation outcomes to estimate optimal state-action values
Q∗. An MCTS tree consists of nodes referring to MDP
states, and edges referring to MDP actions. One iteration of
MCTS algorithm involves four stages: selection, expansion,
simulation and backpropagation. In the selection step, MCTS
nodes are selected using a specific selection strategy starting
from the root node until a leaf node is reached. In the
expansion step, the leaf node is expanded by one or more
remaining children nodes, and one of the expanded children
nodes is again selected using the selection strategy. In the
simulation step, a Monte Carlo simulation is performed
from the current node until the planning horizon or until
a terminal node is found. In the backpropagation step, the
reward outcome of the simulation is used to update each
visited node’s statistics in a reverse manner from leaf to root.

B. Approximate Simultaneous Move MCTS

In our previous work [9], we proposed Approximate Simul-
taneous Move (ASM), an MCTS-based algorithm for CAV
action planning in the presence of a misbehaving vehicle.
ASM is suitable for larger number of agents or action-space
sizes than regular MCTS. ASM reduces the MCTS tree size
exponentially by reducing the branching factor. Each node
in the MCTS tree refers to a coalition joint state. However,
each edge in the MCTS tree refers to an individual action
of the current agent and not the joint action as in regular
MCTS. Since each edge only refers to an individual action
for the current agent, the branching factor is reduced by
a factor equal to the number of agents. Resultant MCTS
tree is exponentially smaller and requires significantly less
iterations to explore.

The reward function used in ASM algorithm consists of
three reward parameters and is defined as:

ri = ricollision + rispeed + risuccess (1)

where,
• ricollision is a fixed negative reward parameter if the

simulated action leads to a collision for CAV i.

1107

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 27,2023 at 18:09:29 UTC from IEEE Xplore. Restrictions apply.

• risuccess is the fixed positive reward parameter if the
selected action for CAV i is simulated successfully
without any collisions.

• rispeed is the sum of two values: the speed deviation for
CAV i and a fixed negative reward parameter indicating
if CAV i came to a full stop.

C. Limitations of ASM reward function

The most important drawback of the current ASM reward
function is that it uses common set of fixed reward param-
eters for all CAV situations. Based on the initial coalition
state and actions selected during MCTS iteration simulations,
different coalition states will be simulated during different
MCTS iterations. From a coalition state stk at time tk,
different CAV actions aitk ,∀i ∈ C will lead to different
coalition states stk+1

at time tk+1. Using same set of fixed
reward parameters for different coalition states is subopti-
mal. Additionally, the current ASM reward function only
considers three reward parameters. These parameters are not
representative enough to incentivize or deter different CAV
actions that lead to different coalition states. Since some
coalition states are more desirable than others for successful
collision avoidance, additional reward parameters need to be
added to the ASM reward function.

V. AIRCAP ALGORITHM

We present AdaptIve Reward for CAV Action
Planning(AirCap) algorithm for CAV action planning
in an emergency situation. We consider CAVs driving in
a coalition formation on a straight highway. A coalition
member detects a misbehaving vehicle in its neighborhood
and alerts all coalition members. A CAV i’s neighborhood
is defined by a bounding box centered at si.pi and having a
fixed length of 3 times CAV i’s length si.xi.length and a
fixed width of 2 times CAV i’s width si.xi.width as shown
in Figure 1. After receiving an alert about the misbehaving

Fig. 1: Neighborhood CAV i

vehicle, each CAV executes the AirCap MCTS algorithm to
rank its possible action plans αi

h for the planning horizon
h. Each of these ranked action plans αi

h consists of a
sequence of actions aitk to be performed and their associated
Q∗ state-action values. To estimate the Q∗ values, CAV i
simulates many MCTS iterations with a different possible
action plan in each iteration. The action plan to be simulated
in a particular MCTS iteration is chosen by MCTS selection,
expansion and simulation strategies. The reward for taking
each of the actions in the simulated action plan is computed
using the novel reward function described below.

A. AirCap reward function

We consider several reward factors that affect CAV’s safety,
efficiency and comfort. Individual CAV i’s reward ritk at time
tk is defined as a dot product of two vectors: a weight vector
w and a reward factors vector ri.

ritk = w · ri (2)

which is equivalent to,

ritk =
∑
j

wjr
i
j

where ri = {rij} is a vector consisting of several reward
factors indexed by j as follows:
• riccol: coalition collision corresponds to the boolean

value indicating if there is a collision between CAV
i and another coalition member while simulating an
action aitk during the current MCTS iteration

• rimcol: misbehaving collision corresponds to the boolean
value indicating if there is a collision between CAV i
and the misbehaving vehicle while simulating an action
aitk during the current MCTS iteration

• riaccel: Current action aitk ’s acceleration
• ridecel: Current action aitk ’s deceleration
• risd: speed deviation corresponds to the difference of the

current speed sitk .speed and the initial speed sit1 .speed
of the CAV

• rilc: lane change corresponds to the difference between
the current lane index sitk .lane and the previous lane
index sitk−1

.lane

• ristop: full stop corresponds to the boolean value indi-
cating if the current speed sitk .speed equals zero

• rimv: max velocity corresponds to the boolean value
indicating if the current speed sitk .speed goes above
the allowed maximum velocity of the vehicle

In Equation 2, the weight vector w consists of weight values
{wj}, each of which is multiplied with exactly one reward
factor from the set of reward factors. Each of the reward
factors represents one or more action. For example, riaccel
represents accel action and rilc represents cll and clr actions.
Setting a high or low value for a particular weight wj

makes CAV i to either prioritize or deprioritize that reward
factor’s represented actions in its final list of prioritized
action plans. For example, if we set a relatively high weight
value waccel which is multiplied with the reward factor
riaccel, then CAV i prioritizes action accel higher than other
actions in its final action plans. Since coalition collisions
are much more frequent than misbehaving collisions during
AirCap iterations, we split them in separate factors.

An important observation is that some actions should be
prioritized in a particular coalition state but in a completely
different coalition state, the same of set of actions may lead
to a collision among coalition members. Since action plans
for different MCTS iterations are generated using Monte
Carlo samples and are different from each other, coalition
states will also be different for each action in the action plan
for each MCTS iteration. Using the same set of weights for

1108

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 27,2023 at 18:09:29 UTC from IEEE Xplore. Restrictions apply.

all actions in all iterations is suboptimal. Below we discuss
the coalition state-based weights updating algorithm for the
AirCap reward function.

1) Coalition state based weights update: In AirCap, each
CAV i executes MCTS iterations to estimate Q∗ values for its
explored action plans αi

h. When simulating a single MCTS
iteration, CAV i executes a sequence of actions {aitk}

h
k=1

in the action plan αi
h. When simulating each of the actions

in {aitk}
h
k=1 sequence, coalition states sitk will be different

for different k values. For instance, consider the following
coalition state at time step tk for k ∈ {1, h}: Consider the

Fig. 2: cll and clr actions for CAV i at time step tk

two actions for CAV i at time step tk: change lane to left
(cll) and change lane to right (clr). The positions of CAV i
at time step tk+1 for both actions are shown in figure 2. We
consider the neighborhood of each of these positions. There
is one coalition member in the neighborhood for action cll’s
ending position, whereas there are two coalition members
in the neighborhood for action clr’s ending position. While
CAV i selects and simulates its chosen action during current
MCTS iteration, it will also select and simulate actions for
the neighborhood vehicles simultaneously in the same MCTS
iteration. This may lead to a collision with CAV i if the the
selected actions of the neighborhood vehicles are conflicting
with CAV i’s selected action. If we consider all future actions
that can be selected for neighborhood vehicles and take all
the action combinations of neighborhood vehicles, then the
proportion of neighborhood vehicles’ action combinations
that can have a collision with CAV i are greater if CAV
i selects action clr than if CAV i selects action cll’s ending
position. Thus more penalty (or less reward) should be
received for choosing action clr than action cll. We achieve
this by updating the reward weights dynamically before
simulating each action during the AirCap’s MCTS iteration.
We assume that the weights are negative values and represent
the penalty. Reward weights are temporarily modified for
each action aitk as below:

w = (1 + βN i)w (3)

where
• N i is the number of vehicles in CAV i’s neighborhood

after simulating action aitk during current MCTS itera-
tion

• β is the coefficient in range [0, 1]

During the simulation of each MCTS iteration in AirCap,
CAV i uses the modified reward weights as given in Equation
3 for each action in the simulated action plan until the plan-
ning horizon. During the backpropagation phase of MCTS

iteration, reward values computed using Equation 2 are used
to update each visited node’s statistics in the MCTS tree in
a reverse order from the leaf node to the root node. After all
MCTS iterations are executed, CAV i computes the state-
action value Q∗ at each node of its MCTS tree using the
node statistics. Each CAV i uses the computed Q∗ values to
construct, rank and share its mitigation action plans with the
coalition leader, which finds the best possible non-colliding
action plan for the whole coalition using the beam-search
algorithm [9].

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the success rate of the proposed
AirCap algorithm and compare it with the ASM algorithm
[9], the state-of-the-art centralized algorithm proposed by
[15] and the leading decentralized algorithm DeCoC-MCTS
proposed by [8]. We first discuss the multi-agent based
simulation framework used to run the experiments, the
experimental setting and then present our results.

A. MATISSE

We tested the algorithms in MATISSE 3.0, a microscopic
multi-agent based traffic simulation system developed at the
MAVS lab at UT Dallas [17]. MATISSE includes necessary
tools and features to simulate for Intelligent Transportation
Systems including virtual CAV agents, virtual traffic light
agents and virtual intersection agents.

(a) Vehicle agents communi-
cate within communication ra-
dius in MATISSE

(b) Vehicle agent with long
range radar and short range
LIDAR in MATISSE

Fig. 3: Realistic simulation of CAVs in MATISSE

A virtual CAV agent features simulated sensors including
short range LIDAR and long range radars. CAVs can also
communicate with other CAVs using simulated V2V com-
munication. During the simulation, the user can modify a
CAV’s properties (e.g., sensor range and field of view, com-
munication radius) and behavior (e.g., speed, acceleration)
and witness the outcome in simulated real-time.

B. Experimental setting

We have implemented and tested AirCap, ASM, DeCoC-
MCTS, and the centralized algorithm in MATISSE, the
multi-agent-based traffic simulator 1. We refer to a unit of
length in MATISSE simulator as unit. One full simulation
cycle of MATISSE is referred as cycle. In our experiments,
a coalition of CAVs is navigating on a three-lane straight
highway at the speed of 2 units/cycle. One of the coalition

1Demo videos are available at https://www.utdmavs.org/
connected-vehicles/

1109

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 27,2023 at 18:09:29 UTC from IEEE Xplore. Restrictions apply.

(a) Scenario 1: Misbehaving ve-
hicle accelerates from behind
the coalition of 6 CAVs

(b) Scenario 2: Misbehaving ve-
hicle stops in front of the coali-
tion of 6 CAVs

(c) Scenario 3: Misbehaving ve-
hicle accelerates or stops in the
middle of the coalition of 4
CAVs

Fig. 4: Placement of coalition members (yellow) and the
misbehaving vehicle (red) in tested scenarios

members detects a misbehaving vehicle in its sensor range.
We consider three types of scenarios with respect to the
misbehaving vehicle’s position. Figure 4 illustrates all three
scenarios used in our experiments.
• Scenario 1: The misbehaving vehicle is positioned be-

hind the coalition and speeds up at 5 units/cycle.
• Scenario 2: The misbehaving vehicle is positioned in

front of the coalition and comes to a full stop at 0
units/cycle.

• Scenario 3: The misbehaving vehicle is surrounded
by the coalition members and either speeds up at 5
units/cycle or comes to a full stop at 0 units/cycle.

The affected CAV detects a potential collision with the
misbehaving vehicle that will occur after Time To Col-
lide (TTC) cycles. After the affected CAV sends alert to
other coalition members, each coalition member executes
the decision-making algorithm to find its collision-avoiding
actions or the collision-avoiding trajectory (depending on
the algorithm) for a planning horizon h. The TTC value in
these experiments is set to 15 cycles. We set the planning
horizon h = 60 cycles, significantly greater than TTC,
to avoid possible and yet undetected collisions of other
coalition members with the misbehaving vehicle. For AirCap
algorithm, the reward coefficient β is set to 0.5.

For AirCap, ASM, and DeCoC-MCTS, CAVs have a
fixed action duration ∆t. We set this action duration to
10 cycles for realistic action execution in MATISSE. This
causes the CAVs to select 6 actions in their action plans for
the chosen planning horizon of 60 cycles. The centralized
algorithm generates the CAV trajectory instead of CAV
actions represented using waypoints. We set the duration
between two waypoints to 3 cycles. A total of 20 waypoints
are computed for the planning horizon of 60 cycles.

C. Evaluation results

For the evaluation, we perform 60 experiments for each
scenario for each of the AirCap, ASM, DeCoC-MCTS and
the centralized algorithms and calculate their success rate
values. Each experiment’s result is considered a success if
the algorithm is able to find a valid collision-free solution
for the planning horizon, otherwise the result is considered
to be unsuccessful.

500 600 700 800 900 1,000

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

3.7s 4.06s 4.42s 4.78s 5.14s 5.5s
Iterations (computation time)

Su
cc

es
s

ra
te

Centralized
DeCoC-MCTS

ASM
AirCap

Fig. 5: Scenario 1: The misbehaving vehicle is accelerating
from behind a coalition of six CAVs.

800 900 1,000 1,100 1,200 1,300

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

5.6s 6.34s 7.08s 7.82s 8.56s 9.3s
Iterations (computation time)

Su
cc

es
s

ra
te

Centralized
DeCoC-MCTS

ASM
AirCap

Fig. 6: Scenario 2: The misbehaving vehicle comes to a full
stop in front of a coalition of six CAVs.

For AirCap and ASM experiments, we vary the number
of MCTS iterations and plot the success rate vs the number
of MCTS iterations. One AirCap iteration does not directly
correspond to one DeCoC-MCTS iteration, as the compu-
tational complexity for both algorithms is different for a
single MCTS iteration. We estimate the average computation
time of AirCap in seconds for each value of the number of
iterations (e.g., 3.7s for 500 iterations of AirCap for sce-
nario 1). Experiments for DeCoC-MCTS and the centralized
algorithm are executed for the estimated computation time
limits for fair comparison and we plot their success rates
vs the computation time limit. Figures 5, 6, and 7 show the
success rate vs the number of iterations (or computation time
in case of DeCoC-MCTS and the centralized algorithm) for
scenarios 1, 2, and 3 respectively.

For scenario 1 and 2 involving six CAVs, the centralized
algorithm and DeCoC-MCTS are not able to find solutions
within the computation time limits. The reason according to
our analysis is that the centralized algorithm and DeCoC-
MCTS are not able to find solutions for coalition sizes
larger than 4 within computation time limit. For scenario 3
involving a smaller coalition of four CAVs, these algorithms

1110

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 27,2023 at 18:09:29 UTC from IEEE Xplore. Restrictions apply.

700 800 900 1,000 1,100 1,200

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2.2s 2.42s 2.64s 2.86s 3.08s 3.3s
Iterations (computation time)

Su
cc

es
s

ra
te

Centralized
DeCoC-MCTS

ASM
AirCap

Fig. 7: Scenario 3: The coalition member misbehaves in the
middle of a coalition of four CAVs.

are able to find solutions and achieve non-zero success rates.
Scenario 1 and 2 results clearly show the superior per-

formance of AirCap over ASM. For scenario 3, AirCap
improves upon ASM with smaller margins. The reason for
this behavior is the size of the coalition and CAV positions in
the coalition. Scenario 1 and 2 involve larger coalition sizes
of 6 than scenario 3. The CAV positions in the coalitions are
also more dense in scenario 1 and 2 compared to scenario 3.
Large coalition sizes and dense coalition states both limit
the number of non-colliding action choices for coalition
members, as more CAV action plans lead to collisions among
coalition members. In such situations, coalition state based
weights updating algorithm significantly improves MCTS
algorithm’s ability to prioritize CAV action plans. This results
in better success rates for AirCap algorithm. Scenario 3
involves smaller number of CAVs and the configuration
of CAVs is also less dense. Additionally, the misbehaving
vehicle is situated in the middle of the coalition, which limits
the action choices for the coalition members, as more CAV
action plans lead to collisions with the misbehaving vehicle.
In such scenarios, coalition state based reward weights
update makes less improvement in prioritizing non-colliding
action plans. This leads to relatively smaller improvements
in Scenario 3.

Another important finding from experiments is, there is a
positive correlation between success rate values and iteration
values for AirCap and ASM algorithms indicating better
reliability of these approaches, which is not true for DeCoC-
MCTS.

VII. CONCLUSION

In this paper, we presented AdaptIve Reward for CAVs
Action Planning (AirCap), an MCTS-based cooperative ac-
tion planning algorithm for a coalition of CAVs in emergency
scenarios. We proposed a novel idea of dynamically changing
CAVs reward function weights for different actions based
on resultant coalition states. The proposed AirCap algorithm
significantly improves upon its predecessor ASM algorithm.
We implemented AirCap in MATISSE and evaluated it

against the state-of-the-art centralized and decentralized al-
gorithms. Experimental results show that AirCap’s coalition
state-based weights update strategy significantly improves
the algorithm’s success rate than a fixed reward function
in large coalitions with dense CAV configurations. AirCap
also outperforms competitor centralized and decentralized
algorithms.

The presented AirCap algorithm only considers the num-
ber of CAVs in the CAV’s current neighborhood. We plan to
explore using other coalition state attributes to dynamically
update the reward function weights.

REFERENCES

[1] H. Manoochehri and R. Wenkstern, “Dynamic coalition structure
generation for autonomous connected vehicles,” in 2017 IEEE Inter-
national Conference on Agents (ICA). IEEE, 2017, pp. 21–26.

[2] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” Journal of guidance, control, and
dynamics, vol. 25, no. 1, pp. 116–129, 2002.

[3] C. Andriotis and K. Papakonstantinou, “Managing engineering sys-
tems with large state and action spaces through deep reinforcement
learning,” Reliability Engineering & System Safety, vol. 191, p.
106483, 2019.

[4] T. Vodopivec, S. Samothrakis, and B. Ster, “On monte carlo tree
search and reinforcement learning,” Journal of Artificial Intelligence
Research, vol. 60, pp. 881–936, 2017.

[5] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering
the game of go without human knowledge,” nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[6] D. Lenz, T. Kessler, and A. Knoll, “Tactical cooperative planning for
autonomous highway driving using monte-carlo tree search,” in 2016
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2016, pp. 447–453.

[7] K. Kurzer, C. Zhou, and J. M. Zöllner, “Decentralized cooperative
planning for automated vehicles with hierarchical monte carlo tree
search,” in 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE,
2018, pp. 529–536.

[8] K. Kurzer, F. Engelhorn, and J. M. Zöllner, “Decentralized cooperative
planning for automated vehicles with continuous monte carlo tree
search,” in 2018 21st International Conference on Intelligent Trans-
portation Systems (ITSC). IEEE, 2018, pp. 452–459.

[9] D. Patel and R. Zalila-Wenkstern, “Collaborative collision avoidance
for cavs in unpredictable scenarios,” in 2020 IEEE 3rd Connected and
Automated Vehicles Symposium (CAVS). IEEE, pp. 1–6.

[10] T. Kessler and A. Knoll, “Cooperative multi-vehicle behavior coor-
dination for autonomous driving,” in 2019 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2019, pp. 1953–1960.

[11] C. Burger and M. Lauer, “Cooperative multiple vehicle trajectory
planning using miqp,” in 2018 21st International Conference on
Intelligent Transportation Systems (ITSC). IEEE, 2018, pp. 602–607.

[12] M. Düring, K. Franke, R. Balaghiasefi, M. Gonter, M. Belkner, and
K. Lemmer, “Adaptive cooperative maneuver planning algorithm for
conflict resolution in diverse traffic situations,” in 2014 International
Conference on Connected Vehicles and Expo (ICCVE). IEEE, 2014,
pp. 242–249.

[13] S. Manzinger, M. Leibold, and M. Althoff, “Driving strategy selection
for cooperative vehicles using maneuver templates,” in 2017 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 647–654.

[14] Z. Wang, Y. Zheng, S. E. Li, K. You, and K. Li, “Parallel optimal
control for cooperative automation of large-scale connected vehicles
via admm,” in 2018 21st International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2018, pp. 1633–1639.

[15] A. Nakamura, Y.-C. Liu, and B. Kim, “Short-term multi-vehicle
trajectory planning for collision avoidance,” IEEE Transactions on
Vehicular Technology, 2020.

[16] C. Boutilier, “Sequential optimality and coordination in multiagent
systems,” in IJCAI, vol. 99, 1999, pp. 478–485.

[17] B. Torabi, M. Al-Zinati, and R. Z. Wenkstern, “Matisse 3.0: A
large-scale multi-agent simulation system for intelligent transportation
systems,” in International Conference on Practical Applications of
Agents and Multi-Agent Systems. Springer, 2018, pp. 357–360.

1111

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 27,2023 at 18:09:29 UTC from IEEE Xplore. Restrictions apply.

