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Abstract—In this paper we present MATISSE 3.0, a micro-
scopic simulator for the simulation of Agent-based intelligent
Transportation Systems (ATS). In MATISSE, vehicles and
intersection controllers are modeled as virtual agents which per-
ceive their surroundings through various sensors. ATS-enabled
vehicles and controllers interact with one another through V2X
and 121 communication mechanisms. We discuss the limitations
of well-known microscopic simulators and present the features
that allow MATISSE to simulate realistic ATS scenarios.

I. INTRODUCTION

In this paper we present MATISSE 3.0 (Multi-Agent based
TraffIc Safety Simulation systEm), a multi-agent micro-
scopic traffic simulation system for the simulation of a new
category of ITS that we call Agent-based ITS (ATS) [1]. An
ATS is an autonomous traffic infrastructure which consists
of:

1) standard and ATS-enabled vehicles. ATS-enabled vehi-
cles are equipped with agent-based systems and sensors
that allow them to monitor the driver’s behavior, com-
municate with other vehicles, and communicate with
smart traffic control devices.

2) standard and ATS-enabled intersection controllers.
ATS-enabled controllers are equipped with agent-based
systems and sensors that allow them to monitor the
traffic at their intersection, communicate with other
controllers, and communicate with ATS-enabled vehi-
cles.

3) Zone managers which are specialized agents responsi-
ble for analyzing traffic data and communicating with
ATS-enabled vehicles and intersection controllers when
necessary.

In MATISSE 3.0, vehicles, intersection controllers and
zone managers are modeled as virtual agents which sense
their environment and if enabled, communicate and interact
with one another in simulated real-time. The simulations can
be visualized concurrently in 2D and 3D, and the user can
modify the agents’ and traffic environment’s properties at
run-time without interrupting the simulation. Experimental
results show that 4000 virtual agents situated in a complex
traffic environment can be executed concurrently on a single
PC.

In the following section we discuss related works. In
Section III we give an overview of MATISSE’s architecture.
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In Section IV we discuss MATISSE’s main features and in
Section V we present some experimental results.

II. RELATED WORK

A large number of microscopic traffic simulators have been
proposed in the literature [8], [4], [6], [3], [5], [7], [5].
In this section, we discuss the widely used MATSim [6],
MITSIMLab [3], VISSIM [5] and SUMO [7] in the context
of Agent-based ITS (ATS).

A. Agent Features

1) Agents: MATSim is the only simulator classified as
agent-based. Unfortunately, it does not support the features
intrinsic to agents, i.e., the ability to: a) sense the en-
vironment and make decisions in simulated real-time; b)
function with limited knowledge about the environment; and
¢) collaborate with other agents to achieve specific goals.
Although MITSIMLab, VISSIM and SUMO are not agent-
based, they come with extension mechanisms that allow the
“agentification” (at some level) of virtual vehicles and traffic
lights. Through these extensions, the user can override the
standard vehicle and traffic signal behaviors. This task is
strenuous and requires advanced programming knowledge.
In addition, the implementation of new types of agents is not
possible.

2) Communication: VISSIM is the only simulator that
provides communication mechanisms (V2V and V2I). Al-
though coordination and collaboration between simulated
traffic devices is possible in MITSIMLab, this is achieved
through a centralized component rather than through direct
communication. None of the aforementioned simulators of-
fers mechanisms to simulate 121 communications.

3) Knowledge Acquisition: Knowledge acquisition refers
to the mechanism used by a traffic element to acquire
knowledge about its environment. In realistic ITS simu-
lations, knowledge is acquired either through sensors or
communication. MATSIM provides the simulated vehicles
with global knowledge about their environment. MITSIMLab
provides simulated vehicles with partial knowledge (i.e., a
vehicle is aware of everything within a pre-defined range).
Only VISSIM offers real-time knowledge acquisition through
sensors, V2V or V2I.
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B. Traffic Simulation Features

1) Traffic Network Definition: SUMO, MATSIM and VIS-
SIM provide the ability to import digital traffic maps from
different sources such as OpenStreetMap. The imported maps
are often incomplete (e.g., missing details about the number
of lanes or lanes connections at intersections) and therefore
SUMO and VISSIM use heuristics to determine the missing
information. Given that the graph structure of SUMO and
VISSIM defines a junction as one node in the graph, it is
not possible to obtain accurate models of complex real-world
intersections.

2) Run-time User Interaction: This feature refers to the
user’s ability to modify the simulation settings without the
need to restart the simulation. Only SUMO provides limited
mechanisms to modify some of the simulated environment
configurations at run-time. For example, the TraCI API al-
lows the modification of lane configurations (e.g., maximum
speed, vehicles prohibited on a lane). MATSIM is the only
simulator that offers the capability to trigger external events
(e.g., lane closure) during the execution of the simulation.
However, the user must assign the time and location of an
event and predefine its effect before the simulation starts.

3) Vehicle Dynamics - Vehicle behavior: With the excep-
tion of MATSIM, all of the aforementioned traffic simulators
incorporate car-following and lane-changing models. In VIS-
SIM, car following is simulated using the model proposed in
[10]. In this model, vehicles respond based on the distance
and speed of the vehicles ahead. In VISSIM, it is possible
to define properties such as safety distance for a class of
vehicles. A rule-based model which can also be configured
is used for lane changing.

4) Simulating accidents: Accident simulation is crucial
for the modeling of realistic traffic dynamics [2]. Only
MITSIMLab offers the capability of modeling collisions. In
MITSIMLab an accident is defined before the execution of
the simulation. It is assigned a start time, expected dura-
tion, position, number of lanes affected or blocked, severity,
length, and the maximum speed of the vehicles passing by an
accident. Predefined accidents do not allow for the simulation
of realistic scenarios.

III. OVERVIEW OF MATISSE’s 3.0

A. High Level Architecture

MATISSE’s architecture consists of three building blocks
(see Figure 1) [1]. The simulator’s main constituent is the
Simulation System which includes three subsystems:

1) The Agent System creates and manages simulated
standard and ATS-enabled vehicles and intersection
controllers as well as zone managers. The various
agent types communicate through the Agent-to-Agent
Message Transport Service;

2) The Environment System creates and manages the traf-
fic network;

3) The Simulation Microkernel manages the simulation
workflow.

The Control and Visualization System renders 2D and 3D rep-
resentations of the simulation and provides real-time interac-
tion mechanisms. The Message Transport Service provides a
configurable messaging infrastructure that allows MATISSE’s
building blocks to exchange information.
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Fig. 1. MATISSE’s High-Level Architecture

B. Traffic Network Structure

In MATISSE, a traffic network is specified as a directed graph
where nodes represent intersections or connections between
road segments, and directed edges represent road segments.
The graph defines the possible traffic movements between
lanes in consecutive roads. Figure 2 (a) shows the graph
definition that corresponds to the traffic network illustrated
in Figure 2 (b).
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Fig. 2. Traffic Network Definition in MATISSE
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IV. MATISSE’S 3.0 FEATURES

A. Creating Virtual Agents

MATISSE was built as a multi-agent simulation system from
the ground up. It provides several predefined concrete classes
for vehicle agents. These classes can be instantiated to create
various types of virtual traffic agents equipped with diverse
sensing and communication mechanisms. The modeler can
also easily create new types of agents by implementing
concrete classes extending from abstract classes provided
in MATISSE’s vehicle agent package. The vehicle agent
package consist of four main modules:

1) Interaction module: This module handles the vehicle
agents interaction with external entities. It consists of
three sub-modules: a) The perception module imple-
ments mechanisms necessary for a vehicle agent to
perceive the traffic environment using sensors; b) The
communication module handles all communications be-
tween the vehicle agent and other simulated agents; and
c¢) The route guidance module implements mechanism
that allow a vehicle agent to access the traffic network
information (e.g., route guidance, congestion levels on
roads).

2) Knowledge module: This module represents the ve-
hicle agents memory. It includes the vehicle agents
knowledge about itself (e.g., acceleration, deceleration
capabilities, maximum speed) and knowledge acquired
through sensing and communication (e.g., approaching
vehicle).

3) Task module: This module defines the tasks that a
vehicle agent can perform. MoveTask and TurnTask are
used by the vehicle to travel in the environment.

4) Planning module: This module implements differ-
ent vehicle agent planning strategies. The Travel-
RoutePlanningModule implements plans used by the
vehicle to find a travel route, while the Movement-
DynamicsPlanningStrategy computes a set of possible
actions, their reward and risk values and selects an
action based on the driving behavior.

Figure 3 shows a section of the code for a vehicle agent.
A demo illustrating MATISSE’s features is available at:
mavs.utdallas.edu/its

B. Importing Traffic Networks

In MATISSE, the modeler can either create a virtual traffic
network through a graphical interface by ‘“snapping” road
segments or by importing entire networks through Open
Street Map (OSM). The modeler can also import a section
of an OSM network from a file system or an online viewer.
Several advanced algorithms have been developed to reliably
convert OSM graphs to MATISSE graphs, and automatically
generate missing information, e.g., number of road lanes,
traffic light locations, and allowable traffic movements. In
this section, we give an overview of OSM network structures
and some of MATISSE’s conversion algorithms.

public class VehicleAgent

extends AbstractAgent<vehicleAgentState, wehicleKnowledgemModule, VehicleInteractionModule,
VehiclePlanningtodule, VehicleTaskModule>
implements Serializable

public VehicleAgent(VehicleAgentstate state, CellBounds cellBounds) {
super(state);

1

@override

protected VehicleInteractionodule createInteractionvodule(vehicleknowledgemodule knowledgerodule) {
return new VehicleInteractionModule(new VehiclePerceptiontodule(knowledgetiodule),

new SimpleAgentCommunicationModule (knowledgeliodule.getId()));
¥

@override
protected VehicleKnowledgeModule createknowledg:
return new VehicleKnowledgetodule(state);

dule(VehicleAgentState state) |

@override
protected VehiclePlanningtodule createPlanningModule(VehicleKnowledgeModule knowledgetodule,
VehicleTasktodule taskModule, VehicleInteractionModule interactionModule) {
VehiclePlanGenerator planGenerator =
new VehiclePlanGenerator(knowledgeModule, taskModule, interactionModule);
VehiclePlanExecutor planExecutor =
ew VehiclePlanExecutor (knowledgetodule);
return new VehiclePlanningModule(planGenerator, knowledgetiodule, planExecutor);

@@override protected VehicleTaskModule createTaskiodule(VehicleknowledgeModule argd) {
return new VehicleTasktodule(args);

b

Fig. 3. Code for vehicle Agent

1) OSM Network Structure: OSM networks are in the
form of XML formatted files. They contain three types of
elements: a) node, b) ways and c) relations. Elements can
have tags and keys to describe their features. A node holds
coordinates of a location. A way is an ordered list of nodes.
A way can either be open or closed. A way is closed if it has
the same first and last nodes. It is open otherwise. Relations
are included in an OSM file to describe the relations between
ways and nodes. In OSM file format, ways that are marked
as “highway” represent roads.

Fig. 4. Generate an intersection from an OSM file

2) Overview of MATISSE’s Conversion Algorithm: To
convert an OSM network, MATISSE first reads the OSM file
and extracts ways that represent roads. Then, it adds nodes
associated with roads into its network graph. Next, it connects
the nodes in the order that is specified in the OSM file. Then,
it widens the roads depending on their number of lanes. The
number of lanes is usually specified in OSM files. In case it
is undefined, MATISSE estimates it based on the road type.

In certain cases, widening roads creates overlaps between
road surfaces at intersections (see Figure 4). For these cases,
stop bar positions have to be computed. MATISSE places
a stop bar at the position where a road surface crosses the
surface of its adjacent roads. In figure 4, red circles show
crossing points.
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Fig. 5.

An Intersection in Paris and Its Representation in Open Street Map

After forming intersections, signalized intersections need
to be determined. As discussed in Section II, most micro-
simulators represent a signalized intersection with one node
in their network structure. However, in Open Street Map a
signalized intersection is not necessarily represented by one
node, but often with an arbitrary number of nodes. Figure 5(a)
shows an OSM graph for a complex signalized intersection
in Paris, France. The single signalized intersection is repre-
sented using 6 nodes. Micro-simulators such as SUMO or
VISSIM convert each of the OSM nodes into one signalized
intersection which results in an incorrect representation of
the real network topology (see Figure 5(b)). As shown in
Figure 5(c), MATISSE’s network structure and conversion
algorithms allow an accurate conversion of the information.

C. Initial Vehicle Distribution

At the start of the simulation, the user defines the total
number of vehicles to be run as well as entry and exit points.
The initial vehicle distribution can be automatically generated
by MATISSE or specified by the user through a graphical
interface.

D. Vehicle and Intersection Controller Agents

Virtual ATS-enabled vehicles and intersection controllers are
equipped with sensors and perceive the environment within
their sensor range, called circle-of-influence (COI). They
are able to communicate with other enabled vehicles and
intersection controllers located within their COI (see Figure
6(a)).

For standard virtual vehicles, a vision cone is used to
simulate a human driver’s vision range and perception of the
environment. Other virtual human sensors such as auditory
and olfactory sensors are available. The virtual driver’s level
of distraction is directly related to its level of perception of
its direct environment (See Figure 6(b)).

The ranges of the various sensors can be altered during
the execution of simulation.

E. Vehicle Behavior

Unlike most simulators which use predefined car-following
and lane-changing algorithms, in MATISSE 3.0, vehicle

Fig. 6. Vehicle agents perception. a) Circle of Influence b) Vision cones

agents compute the set of possible actions based on their
current perception of the environment, the maximum accel-
eration and deceleration rates and their flexibility in steering.
They assign a reward and a risk value to each action. The
reward indicates the impact that an action has in helping
the vehicle achieve its objectives (e.g., reach its destination
as fast as possible, follow traffic rules, drive smoothly). For
each action, the agent also assesses the risk that an action
may result in a collision. For normal driving behavior, the
agent ignores the actions that are considered dangerous and
executes the action with the highest reward.
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Fig. 7. Four possible actions of a vehicle

Various driving behaviors can be simulated by assigning
different values to the risk-aversion factor and the importance
of an objective in the reward values. Figure 7 shows a
scenario where the vehicle agent in the back can take different
actions. In Action I a vehicle agent maintains its current
speed and steering. In Action 2 it maintains current steering
and decreases its speed. In Action 3 it maintains current
steering and increases its speed. Finally, in Action 4 it
maintains its current speed and steers the vehicle 20 degrees
to the right. If we assume that with respect to the vehicle
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Fig. 8. 2D visualization of Paris’s Traffic Network.

agent’s objectives, Actions 3 has the highest reward and
Action 4 has the lowest reward, and with respect to collision,
Action 3 has the highest risk and Action 2 has the lowest
risk then, among the four actions, an aggressive agent will
choose Action 3, a defensive agent will choose Action 2, a
regular agent will select Action I, and a careless agent will
choose Action 4.

F. Agent Property Modification At Run Time

With MATISSE, the user can modify agent properties such
as circle-of-influence, vision range and speed, and display
these properties at run-time. Also, the user can track agents
by their IDs and change properties of a group of agents.

During the simulation, the user can modify the driver’s
level of distraction. This may dynamically introduce unex-
pected accidents and unpredicted traffic behavior.

V. EXPERIMENTAL RESULTS

The experiments discussed in this section were run on a
multicore PC (Intel Core 17 X980 CPU (3.33GHz), 6.00
GB, 64-bit Windows 7, 12GB Memory DDR3 2673.2MHz,
NVIDIA GeForce GTX 480 GPU). A simulated model
of Paris’s road network was produced in MATISSE
3.0. The model includes 2981 road segments and 231
signalized intersections in addition to the 665 non-signalized
intersections. Figure 8 shows a 2-D representation of the
traffic network. Tables I shows the number of road segments,
classified based on the number of lanes. Tables II and III
summarize the types of signalized and non signalized
intersections, classified based on the number of incoming
and outgoing lanes.

TABLE I
NUMBER OF ROAD SEGMENTS WITH VARIOUS NUMBER OF LANES

LType [[ T [ 2 ][ 3 ] 4715
[Count || 1820 | 540 | 348 | 254 | 13

[ 6]
[ 6]

TABLE II
NUMBER OF SIGNALIZED INTERSECTION WITH VARIOUS INCOMING AND
OUTGOING LANES

[ Type [ Ix1 [ 1x2]1Ix3][2x2]2x3]3x3 ] Other |
Count ]| 33 | & | & | 3 | 6 | 3 | 6 |

TABLE III
NUMBER OF NON-SIGNALIZED INTERSECTION WITH VARIOUS
INCOMING AND OUTGOING LANES

[ Type [ I1x1 [1x2[1x3]2x2]2x3][3x3] Other |
[Count || 372 | 110 | 78 | 4 [ 3 [ 0 | 9 |

Experiment 1: Simulating ATS Traffic Scenarios

The purpose of this experiment is to get an initial evaluation
of road usage and communication costs for traffic scenarios
involving a combination of ATS-enabled and standard vehi-
cles.

For the assessment of road usage, vehicles were added to

the simulation until the road network reached its capacity.
Figure (9) shows the average road occupancy for different
percentages of autonomous vehicles. Road usage reaches its
higher level when all vehicles are ATS-enabled.
For the assessment of communication costs, the simulations
were run with 3000 vehicles. Figure (10) shows the number
of exchanged messages between vehicles for various
distributions of ATS-enabled vehicles. As expected, the
number of exchanges messages increases exponentially
when the number of ATS-enabled vehicles increases.

Advanced experimental results on the assessment of
agent-based traffic congestion reduction using MATISSE 3.0
can be found in [9].

Experiment 2: Simulation Scalability

The purpose of this experiment is to evaluate MATISSE’s
performance in simulating large scale agent-based traffic
scenarios. The experiment starts with an empty network
of the city of Paris. Ten ATS-enabled virtual vehicles are
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Fig. 9. Road Occupancy for Different Number of Autonomous Vehicles
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added to the simulation every second until the number of
vehicles reaches 6000. Figure (11) shows the performance
of MATISSE in terms of CPU and memory usage. Initially,
20% of the memory is used by the operating system and
MATISSE’s 3.0 core module. As expected, as the number
of vehicles increases (between 1000 and 4000 vehicles), the
memory usage increases until it reaches 90%. With respect
to CPU usage, the increase is not as important. Nevertheless,
we notice that when the memory usage reaches 90%, the
CPU usage increases drastically. This is due to thrashing.
When the number of vehicles is higher than 4000, both
CPU and memory usage reach their maximum value and
the simulation performance is drastically impacted. Based
on these results, we conclude that the memory size is the
limitation for MATISSE.

VI. CONCLUSION

In this paper we presented MATISSE 3.0, a microscopic
simulator for the simulation of Agent-based Intelligent Trans-
portation Systems (ATS). We discussed the core features that
allow MATISSE to simulate realistic ATS scenarios. Exper-
imental results show that MATISSE can execute simulations
with up to 4000 ATS-enabled vehicles on a single PC.
Various advanced agent-based algorithms for traffic con-
gestion reduction and urban evacuation have been developed
and validated in MATISSE. Our goal is to continue experi-
menting with the simulator and investigate the development

of a capability that will allow the integration of real-time data
into the simulation.
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