
Matteo Baldoni, Jörg P. Müller
Ingrid Nunes, Rym Zalila-Wenkstern (eds.)

Engineering Multi-Agent
Systems

Fourth International Workshop, EMAS 2016
Singapore, May 9th and 10th, 2016

Workshop Notes

EMAS 2016 Home Page:
http://www.utdmavs.org/emas2016/

Preface

The engineering of multi-agent systems (MAS) is a multi-faceted, complex task.
These systems consist of multiple, autonomous, and heterogeneous agents, and
their global behavior emerges from the cooperation and interactions among the
agents. MAS have been widely studied and implemented in academia, but their
full adoption in industry is still hampered by the unavailability of comprehensive
solutions for conceiving, engineering, and implementing these systems.

Although much progress has been made in the development of multi-agent
systems, the systematic engineering of large-scale MAS still poses many chal-
lenges. Even though various models, techniques and methodologies have been
proposed in the literature, researchers and developers are still faced with the
common questions:

– Which architectures are suitable for MAS?
– How do we specify, design, implement, validate and verify, and evolve our

systems?
– Which notations, models and programming languages are appropriate?
– Which development tools and frameworks are available?
– Which processes and methodologies can integrate all of the above and pro-

vide a disciplined approach to the rapid development of high-quality MAS?

Existing approaches address the use of common software engineering solu-
tions for the conception of MAS, the use of MAS for improving common software
engineering tasks, and also the blending of the two disciplines to conceive MAS-
centric development processes.

The International Workshop on Engineering Multi-Agent Systems (EMAS)
provides a comprehensive venue, where software engineering, MAS and artificial
intelligence researchers can meet together, discuss different viewpoints and find-
ings, and share them with industry. EMAS was created in 2013 as a merger of
three separate workshops (with overlapping communities) that focused on the
software engineering aspects (AOSE), the programming aspects (ProMAS), and
the application of declarative techniques to design, program, and verify MAS
(DALT). The workshop is traditionally co-located with AAMAS (International
Conference on Autonomous Agents and Multiagent Systems) which in 2016 takes
places in Singapore.

This year’s EMAS workshop is held as a one-and-a-half day event. 14 pa-
pers were submitted to the workshop and each submission received, received at
least three reviews, the program committee selected 13 papers for presentation.
The program also includes two invited talks. T he first “Implementing Norms
Why is it so difficult?”, by prof. Frank Dignum from the Universiteit Utrecht, is
held jointly with the COIN workshop. The second, by prof. Jaime Simão Sich-
man, is titled “Designing and Programming Multiagent Organizations.” We are
confident that the talks offer an interesting perspective of the work that has
been done for conceiving sound and complex MAS, and they will also offer the
opportunity for fruitful and interesting discussions.

iii

We would like to thank the members of the Program Committee for their
excellent work during the reviewing phase. We also acknowledge the EasyChair
conference management system that –as usual– provided its reliable and useful
support of the workshop organization process. Moreover, we would like to thank
the members of the Steering Committee of EMAS for their valuable suggestions
and support.

April 6, 2016 Matteo Baldoni
Jörg P. Müller

Ingrid Nunes
Rym Wenkstern

iv

Table of Contents

Implementing Norms Why is it so difficult? . 1
Frank Dignum

Designing and Programming Multiagent Organizations 5
Jaime Sichman

nDrites: Enabling Laboratory Resource Multi-Agent Systems 7
Katie Atkinson, Frans Coenen, Phil Goddard, Terry Payne and Luke
Riley

Data and Norm-aware Multiagent Systems for Software Modularization
(Position Paper) . 23

Matteo Baldoni, Cristina Baroglio, Diego Calvanese, Roberto Micalizio
and Marco Montali

Agent Oriented Methodology for Cognitive Agents in Serious Games 39
Wai Shiang Cheah, John-Jules Meyer and Kuldar Taveter

Augmenting Agent Computational Environments with Quantitative
Reasoning Modules and Customizable Bridge Rules 55

Stefania Costantini and Andrea Formisano

Monitoring Patients with Hypoglycemia using Self-Adaptive
Protocol-Driven Agents: a Case Study . 71

Angelo Ferrando, Viviana Mascardi and Davide Ancona

Limitations and Divergences in Approaches for Agent-Oriented
Modelling and Programming . 88

Artur Freitas, Rafael C. Cardoso, Renata Vieira and Rafael H. Bordini

Application Framework with Abstractions for Protocol and Agent Role . . 104
Bent Bruun Kristensen

A Namespace Approach for Modularity in BDI Programming Languages . 117
Gustavo Ortiz-Hernández, Jomi F. Hübner, Rafael H. Bordini, Alejan-
dro Guerra-Hernández, Guillermo De J. Hoyos-Rivera and Nicandro
Cruz-Ramı́rez

ARGO: A Customized Jason Architecture for Programming Embedded
Robotic Agents . 133

Carlos Pantoja, Márcio Stabile Jr, Nilson Mori Lazarin and Jaime
Sichman

A Multi-Agent Solution for the Deployment of Distributed Applications
in Ambient Systems . 149

Ferdinand Piette, Costin Caval, Cédric Dinont, Amal El Fallah Seghro-
uchni and Patrick Taillibert

v

How Testable are BDI Agents? An Analysis of Branch Coverage 165
Michael Winikoff

Reasoning about the Executability of Goal-Plan Trees 181
Yuan Yao, Lavindra De Silva and Brian Logan

vi

Program Committee

Natasha Alechina University of Nottingham
Matteo Baldoni University of Torino
Luciano Baresi Politecnico di Milano
Cristina Baroglio University of Torino
Jeremy Baxter QinetiQ
Ana L. C. Bazzan Universidade Federal do Rio Grande do Sul
Olivier Boissier ENS Mines Saint-Etienne
Rafael H. Bordini FACIN-PUCRS
Lars Braubach University of Hamburg
Nils Bulling TU Delft
Rem Collier UCD
Massimo Cossentino National Research Council of Italy
Fabiano Dalpiaz Utrecht University
Mehdi Dastani Utrecht University
Louise Dennis University of Liverpool
Virginia Dignum TU Delft
Jürgen Dix TU Clausthal
Amal El Fallah Seghrouchni LIP6 - University of Pierre and Marie Curie
Baldoino Fonseca Federal University of Alagoas
Aditya Ghose University of Wollongong
Adriana Giret Technical University of Valencia
Jorge Gomez-Sanz Universidad Complutense de Madrid
Sam Guinea Politecnico di Milano
Christian Guttmann Institute of Value Based Reimbursement System
James Harland RMIT University
Vincent Hilaire UTBM/IRTES-SET
Koen Hindriks Delft University of Technology
Benjamin Hirsch Khalifa University
Tom Holvoet K.U. Leuven
Jomi Fred Hubner Federal University of Santa Catarina
Michael Huhns University of South Carolina

Franziska Klügl Örebro University
Joao Leite Universidade Nova de Lisboa
Yves Lespérance York University
Brian Logan University of Nottingham
Viviana Mascardi University of Genova
Philippe Mathieu University of Lille
John-Jules Meyer Utrecht University
Frederic Migeon IRIT
Ambra Molesini Alma Mater Studiourum - Universtà di Bologna
Pavlos Moraitis Paris Descartes University
Haralambos Mouratidis University of Brighton
Jörg P. Müller TU Clausthal

vii

Ingrid Nunes UFRGS
Juan Pavón Universidad Complutense de Madrid
Alexander Pokahr University of Hamburg
Enrico Pontelli New Mexico State University
Alessandro Ricci University of Bologna
Ralph Ronnquist Intendico Pty Ltd
Sebastian Sardina RMIT University
Valeria Seidita University of Palermo
Onn Shehory IBM Haifa Research Lab
Viviane Silva IBM Research
Guillermo Simari Universidad Nacional del Sur in Bahia Blanca
Munindar P. Singh NCSU
Tran Cao Son New Mexico State University
Pankaj Telang North Carolina State University
Wamberto Vasconcelos University of Aberdeen
Jørgen Villadsen Technical University of Denmark
Gerhard Weiss University Maastricht
Michael Winikoff University of Otago
Wayne Wobcke University of New South Wales
Pinar Yolum Bogazici University
Neil Yorke-Smith American University of Beirut
Rym Zalila-Wenkstern University of Texas at Dallas

viii

Steering Committee

Matteo Baldoni University of Torino
Rafael H. Bordini FACIN-PUCRS
Mehdi Dastani Utrecht University
Jürgen Dix TU Clausthal
Amal El Fallah Seghrouchni LIP6 - University of Pierre and Marie Curie
Paolo Giorgini University of Trento
Jörg P. Müller TU Clausthal
M. Birna van Riemsdijk Delft University of Technology
Tran Cao Son New Mexico State University
Gerhard Weiss University Maastricht
Danny Weyns Linnaeus University
Michael Winikoff University of Otago

ix

Acknowledgements

Matteo Baldoni was partially supported by the Accountable Trustworthy Orga-
nizations and Systems (AThOS) project, funded by Università degli Studi di
Torino and Compagnia di San Paolo (CSP 2014).

x

Implementing Norms
Why is it so difficult?

Frank Dignum

Utrecht University, The Netherlands F.P.M.Dignum@uu.nl

Abstract. Many people have made implementations of norms or norma-
tive systems over the years. However, the implementations differ widely
and no uniform methodology to implement normative systems seemed to
have been developed. Why is it so difficult to implement norms? Can’t
we just have a Norms module that can be added to a system? I will
discuss these issues and also point to some possible ways forward.

1 Introduction

In [3] we already described some of the issues that come up when trying to
implement norms in agent systems. Because the norms influence the behaviour
of the agents, they somehow have to be taken into account during the planning
and execution of their actions. It is this influence relation between the norms and
the plans and actions that is difficult to capture. Let me give a simple example.
There is a norm that bikes should stop for a red traffic light. In a typical Dutch
city like Amsterdam it would be hard to deduce this norm from just looking at
the actions of the bikes. So, there is certainly not a one-on-one relation or rule
that makes bikes stop whenever the traffic light is red. From own experience it
seems that the norm functions as a heuristic that states that when you are on
a bike and getting to a red light you have to check whether you can cross and
have to stop when there is traffic coming from the sides streets (that you cannot
avoid in any way). However, bikes will also stop when there are children already
waiting at the traffic light (because you have to give a good example) or when
they spot a policeman that could give you a fine when passing a red light. These
examples show that the way a norm influences the actions is at least partly
situational. One could argue that thus one has to take both the norm and the
current situation as input for the influence relation. Theoretically this is correct,
but it can be quite difficult to determine how the norm and situation should
be combined. Are there just a lot of special situations that give exceptions to a
general rule or are there types of situations that each combine in a different way
with the norm? This is not very clear and also has not been investigated in a
systematic way (although this has, of course, strong links to modeling norms as
a kind of default logic).

However, the situation gets even more complex as not only the present situ-
ation influences the way norms influence behaviour, but also the social structure
of which this situation is a part. E.g. a biker might stop for a red light if everyone

1

else also stops, but ignores the light if most people do so. The biker also might
disregard red lights habitually (at certain crossings or times) if he knows that
in the past this never led to any danger. Finally, if the biker is a school teacher
riding ahead of a class of children on the bike he will never pass a red light. So,
we have to include social status, roles, practices and history in the list of aspects
that should be regarded when modeling the influence of norms on behaviour.
The list gets longer and longer and also involves more and more complex con-
cepts. Thus it is clear that modeling the influence of norms on behavior can be
very complex and will differ depending on which of these aspects are taken into
account.

Of course, norms do not exist in isolation. So, besides the above norm there
might be a norm that you have to come in time for a meeting with your boss.
When you go on the bike to work and are a bit late it might be that you get
a conflict between the norm to stop for a red light and being in time for the
meeting. In a good logic tradition one could solve this problem by giving a
preference order over the norms such that one will be fulfilled and the other
violated when they are in conflict. This could be conveniently handled within
the norms module. However, life is not as simple as that. Often the preferences
of the norms are situation dependent. If I have a meeting with my boss in which
I am going to ask a favor (or promotion) I certainly do not want to be late and
possibly annoy him before even starting the meeting. Thus I might risk going
through red in order to be in time for the meeting. But if I see a policeman near
the traffic light I might stop. The reason being, not that I give priority to the
traffic norm, but rather that if the policeman is going to fine me, it will take
even more time than just waiting for the light! So, at this moment the planning
actually influences the norm preference and which norm might be violated. To
further complicate matters one might even consider that passing through the red
light and being fined one certainly will be late, when you pass through the red
light and not get a fine you certainly will be in time and if you stop for the red
light you still have a chance of making it in time to the meeting. It is clear that
in these more complex cases it does not suffice to just check which norms are
applicable at a certain moment and use those as a kind of filter on the potential
plans. There is a interdependence between the planning and the norms that does
not (always) allow for a one way influence relation (as would be prefered for any
deliberation architecture)!

2 Acting with Norms

Given the above arguments one would think it is better not to incorporate norms
in agents at all. Things are not as grim as they seem though. Norms have many
aspects and not all aspects are equally important in every application. The first
step to take when implementing norms should thus be to determine what the
function should be of the norms in the system that is developed. The aspects
that relate to that function have to be modeled and implemented. In many cases
the norms are seen as constraints that (in principle) can still be violated (either

2

in specific circumstances, randomly in some cases, or based on another clear
criteria). In this case one can have a norms module that is used to check all
potential plans and orders them based on how many norms they violate and
how efficient the plans are.

However, if the norms should lead to emerging behavior as perceived in reality
this will not be enough. In that case more elaborate mechanisms should be
designed. This will often also necessitate a more complex deliberation cycle of
the agents incorporating more social concepts. This is not very easy, because
it is not clear on forehand which concepts are needed exactly and there are no
architectures that incorporate these concepts in a systematic way. I.e. there are
all kinds of extensions of BDI architectures, but often with only one or two new
concepts and usually for a very specific purpose or application area.

What is needed is a richer social model in which norms can play a role and
agents have all social concepts available. Based on such a rich conceptual model
designers can make choices of which parts are needed for their application and
what are the consequences of choices they make (both for possible (emerging)
behaviour and also for efficiency). Until such a more elaborate social model ex-
ists people will have to start from scratch every time they want to implement
norms with a slightly different perspective or function in mind. Although this
is useful in its own right as all these implementations might support some par-
ticular rich social model and give ideas on how to build this, the danger is that
people get tired of using norms because they are difficult and try to circumvent
the problems in current day systems with very primitive means. This will lead to
poorly designed systems that are not well understood and might lead to unfore-
seen or unwanted emerging behavior. The research that I have started in [1] and
[2] should be seen in this light. Although norms do not feature prominently in
these papers, they are the underlying motivation to take this broader perspective
and start working on a more encompassing social framework. As stated in the
vision paper, we hope that other researchers get inspired by this and will join
the research.

3 Biography

Dr. Frank Dignum received his PhD in the previous century and has since been
working in Swaziland, Portugal and The Netherlands. He is working on social
aspects of software agents with applications in serious gaming and social simu-
lations. He is well known for his work on norms and agent communication and
lately for the combination of agents and games. His latest research focuses on
creating new agent architectures to build agents that operate in real-time envi-
ronments and have to cooperate with humans and other agents. He has organized
many workshops and conferences on the topics and given tutorials at most major
conferences and summer schools on them.

3

References

1. F. Dignum, R. Prada, and G.J. Hofstede. From autistic to social agents. In AAMAS
2014, May 2014.

2. V. Dignum, C.M. Jonker, F. Dignum, and R. Prada. Situational deliberation; getting
to social intelligence. In SocialPath workshop, 2014.

3. Löıs Vanhee, Huib Aldewereld, and Frank Dignum. Implementing norms? In Pro-
ceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intel-
ligence and Intelligent Agent Technology - Volume 03, WI-IAT ’11, pages 13–16,
Washington, DC, USA, 2011. IEEE Computer Society.

4

Designing and Programming Multiagent
Organizations

Jaime Simão Sichman1

Laboratório de Técnicas Inteligentes (LTI)
Escola Politécnica (EP)

Universidade de São Paulo (USP)
Av. Prof. Luciano Gualberto, trav. 3, 158

05433-970, São Paulo, SP, Brazil
jaime.sichman@poli.usp.br

Abstract. In the last years, social and organizational aspects of agency
have become a major issue in MAS research. Recent applications of MAS
on Web Services, Grid Computing and Ubiquitous Computing enforce
the need of using these aspects in order to ensure some social order within
these systems. One of the ways to assure such a social order is through
the so-called multiagent organizations. Multiagent organizations are of
two types: either the organization emerge from the activity of the indi-
vidual agents or it is designed to facilitate and guide some specific global
behavior. In the latter case, systems are characterized by the autonomy
of the individual participants that however must be able to collabora-
tively achieve predetermined global goals, within a globally constrained
environment. However, there is still a lack of a comprehensive view of
the diverse concepts, models and approaches related to multiagent orga-
nizations. Moreover, most designers have doubts about how to put these
concepts in practice, i.e., how to design and how to program them. This
invited talk aims to give some possible answers to such questions.

Short Biography

Jaime Simão Sichman is an Associated Professor at University of São Paulo,
from where he has obtained both his B.E. and M.E. degrees. He was one of the
first students to obtain an European label to his PhD degree, developed at the
Institut National Polytechnique de Grenoble (INPG), France, since part of his
research was carried out at the Istituto di Psicologia del CNR (currently ISTC),
Rome, Italy. He has also spent an abbreviated post-doctoral period at the Uni-
versity of Utrecht, at the Netherlands. His main research focus is multi-agent sys-
tems, more particularly social reasoning, organizational reasoning, multi-agent-
based simulation, reputation and trust, and interoperability in agent systems.
He has advised/co-advised 14 MSc, 12 PhD and several undergraduate students.
With other colleagues, he was one of the founders of two subdomains in Multia-
gent systems, namely Multi-Agent-Based Simulation (MABS) and Coordination,
Organization, Institutions and Norms in Agent Systems (COIN), that have orig-
inated two successful international workshop series. He has published more than

5

2

160 papers in national and international conferences and journals. He is member
of the editorial board of the Journal of Artificial Societies and Social Simulation
(JASSS), Mediterranean Journal of Artificial Intelligence, Computación y Sis-
temas, Iberoamerican Journal of Artificial Intelligence, Knowledge Engineering
Review (KER) and International Journal of Agent-Oriented Software Engineer-
ing (IJAOSE). He has organized several workshops and international conferences
and workshops; in particular he was the General Chair (2000) and Program
Co-Chair (2006) of the Joint Brazilian/Iberoamerican Conference on Artificial
Intelligence (SBIA/IBERAMIA), a member of IJCAI Local Arrangment Com-
mittee (2003) and Advisory Committee (2015), the General Chair (2014) of the
World Conference on Social Simulation (WCSS) and AAMAS Tutorial Chair
(2007), Program Co-Chair (2009) and Local Chair (2017). He was a member of
the Brazilian Computer Society (SBC) Advisory Board between 2005 and 2009,
and was the coordinator of its Artificial Intelligence Special Commission (CEIA)
between 2000 and 2002. He was also the director of the Centro de Computação
Eletrônica (CCE) of the University of São Paulo (USP) from 2010 to 2013.

1 Jaime Simão Sichman is partially financed by CNPq, proc.303950/2013-7.

6

nDrites: Enabling Laboratory Resource Multi-Agent
Systems

Katie Atkinson1, Frans Coenen1, Phil Goddard2, Terry R. Payne1, and Luke Riley1,2

(1) Department of Computer Science, University of Liverpool,
Liverpool L69 3BX, United Kingdom, {atkinson,coenen,payne,l.j.riley}@liverpool.ac.uk.

(2) CSols Ltd., The Heath, Business & Technical Park, Blacon,
Runcorn WA7 4QX, United Kingdom, {phil.goddard,luke.riley}@csols.com.

Abstract. The notion of the multi-agent interconnected scientific laboratory has
long appealed to scientists and laboratory managers alike. However, the challenge
has been the nature of the laboratory resources to be interconnected, which typ-
ically do not feature any kind of agent capability. The solution presented in this
paper is that of nDrites, smart agent enablers that are integrated with laboratory
resources. The unique feature of nDrites, other than that they are shipped with
individual instrument types, is that they possess a generic interface at the “agent
end” (with a bespoke interface at the “resource end”). As such, nDrites enable the
required interconnectivity for a Laboratory Resource Multi Agent Systems (LR-
MAS). The nDrite concept is both formally defined and illustrated using two case
studies, that of analytical monitoring and instrument failure prediction.

1 Introduction

Analytical laboratories form a substantial industry segment directed at chemical anal-
ysis of all kinds (clinical, environmental, chemical, pharmaceutical, water, food etc).
Supplying this marketplace is a $100B per annum industry. Laboratory instruments
come in many forms but are broadly designed to undertake a particular type of chemical
analysis. Examples of laboratory instrument types include: inductively coupled plasma
- mass spectrometers (ICP-MS) for elemental analysis and Chromatography systems
for analyte separation. Such laboratory instruments, although usually “front-ended” by
a computer resource of some kind, typically operate in isolation. This is because the in-
terfaces used are specific to individual instrument types (of which there are thousands)
and individual manufactures. The industry acknowledges that there are significant ben-
efits to be gained if instruments, of all kinds, could “talk” to each other and to other de-
vices [10, 22]; an ability to support remote monitoring/managing of instruments would
on its own be of significant benefit. A potential solution is the adoption of a Multi-
Agent Systems (MAS) approach to laboratory resource interconnectivity: a Laboratory
Resource Multi Agent System (LR-MAS).

However, at present, there is no simple way whereby the LR-MAS vision can be
realised. This is not only because of the multiplicity of different interfaces for different
models, but also the complex mappings, translations and manipulations that have to be
undertaken in order to achieve the desired interconnectivity. Even when just consider-
ing specific laboratory instruments, rather than the wider range of laboratory resources,

7

2 nDrites: Enabling Laboratory Resource Multi-Agent Systems

there are many thousands of models being sold at any one time and a huge variety of
legacy systems still in routine use. The limited connectivity that exists is largely focused
on what are known as Laboratory Instrument Management Systems (LIMS); systems
that receive and store data from instruments (for later transmission to laboratory clients)
and manage wider laboratory activities. Some software does exist to facilitate connec-
tivity, for example the L4L (Links for LIMS) software package produced by CSols Ltd1

(a provider of analytical laboratory instrument software); but this still requires expen-
sive on-site visits by specialist engineers to determine the desired functionality and the
nature of the bespoke interfacing. All this serves to prevent the adoption of MAS capa-
bilities within the analytical laboratory industry, despite the general acknowledgement
that large scale MAS connectivity will bring many desirable benefits [10, 22].

The technical solution presented here is that of “smart agent enablers” called nDrites;
an idea developed as part of a collaboration between CSols Ltd and a research team at
the University of Liverpool, directed at finding a solution to allow the realisation of
the LR-MAS vision. The nDrite concept is illustrated in Figure 1. As shown in the fig-
ure, nDrites interact, at the “resource end”, in whatever specific way is required by the
laboratory resource type in question; whilst at the other end nDrites provide generic in-
teraction. Note that in the figure, for ease of understanding, the nDrite is shown as being
separated from the laboratory resource (also in Figure 2), in practice however nDrites
are integrated with laboratory resources. Thus nDrites provide system wide communi-
cations so as to allow agents to interact with laboratory resources to (say): (i) determine
the current state of an entire laboratory system, (ii) determine all past states of the sys-
tem (system history) or (iii) exert control on the laboratory resources operating within
a given laboratory framework. Thus, in general terms, nDrites are a form of intelligent
middleware that facilitate LR-MAS operation. The main advantage offered is that of
cost. The idea is to build up a bank of nDrites, one per instrument type, that are inte-
grated and shipped with the individual instruments in question. This will then alleviate
the need for expensive on-site visits and provide the desired LR-MAS connectivity. The
research team already have nDrites in operation with respect to two instrument types
(an auto-sampler and an ICP-MS2).

Fig. 1. nDrite smart agent enabler

The main contributions of this paper are thus: (i) the concept of nDrite smart agent
enablers that facilitate multi-agent laboratory resource interconnectivity, (ii) the asso-
ciated formalism that provides for the generic operation of nDrites, and (iii) two case
studies illustrating the utility of the nDrite concept (the first currently in production, the
second under development). The rest of this paper is organized as follows. In Section
2 some related work is presented. Our Laboratory Resource Multi-Agent System (LR-

1 http://www.csols.com/wordpress/.
2 The autosampler is manufactured by Teledyne CETAC Technologies,
http://www.cetac.com, while the ICP-MS is manufactured by Perkin-Elmer,
http://www.perkinelmer.com/.

8

nDrites: Enabling Laboratory Instrument Multi-Agent Systems 3

MAS) framework, including the nDrite concept, is presented in Section 3. In Section 4,
we detail the communication method for our LR-MAS and how nDrites handle com-
munication aspects. The operation of the framework is then illustrated using two nDrite
application case studies. The first (Section 5) is an analytical monitoring case study
agent, the second (Section 6) is a resource monitoring application agent that operates
using a data stream classifier. The paper concludes with some discussion in Section 7.

2 Previous Work

The notion of the pervasive, service rich and interconnected scientific laboratory has
long appealed to scientists and laboratory managers of all kinds [10, 22]. Many scien-
tific laboratory processes have traditionally involved using a number of separate, but
interconnected tasks, performed by different systems and services (often bespoke) with
little support for automated interoperation or holistic management at the laboratory
level. To facilitate this interconnectivity, early work was directed at service oriented in-
frastructures using Grid (and later, Cloud) computing [8, 9, 15, 24], whereby laboratory
equipment, high-performance processing arrays, data warehouses, and in-silico scien-
tific modelling was wrapped, and managed, by a service-oriented client [8, 9]. The main
focus was that of a “service marketplace” used to discover different services [19] and to
schedule or provision their use, as well as to provide support for tasks such as: security
[2], notification [17], and scheduling [24]. The need for intelligent, autonomous support
for such Grid infrastructures has been well documented [8, 9, 14, 18, 24, inter alia].

The Grid Computing based laboratory infrastructure idea has now been superseded
by the emergence, and wide-scale adoption, of Web Services, and consequently MAS,
which exploit many of the standards used for the web, and resolved many problems
of interoperability between organisations that can effect grid based approaches. This
migration was essential to mitigate some of the pragmatic challenges with the inter-
connection of services within an Open Agent Environment [29]; however, the flexible
interoperation of systems and services (developed by different stakeholders with differ-
ent assumptions) is still a challenge. This motivated the adoption of a wrapper-based
approach to support wide spread usability within the nDrite concept.

The laboratory instrument MAS vision thus provides for the automation of process
models and workflows [28, 19]; sequences of processes that can occur both serially
and in parallel to achieve a more complex task. The laboratory workflow concept has
been extensively researched. The fundamental idea is that of a collection of software
services, whereby each service is either a process (often semantically annotated [8, 19,
14]), or manages and controls some laboratory resource. Such workflows are typically
orchestrated using editors or AI-based planning tools [19], resulting in either an instan-
tiated workflow (one where the specific service instances are identified and used) or in
an abstract workflow (one where the instantiation of the services themselves is delayed
until execution time). Stein et al. [24, 25] explored the use of an agent-based approach
to automatically discover possible service providers where abstract services are defined
within a workflow, by using probabilistic performance information about providers to
reason about service uncertainty and its impact on the overall workflow. The idea was
that by coordinating their behaviours, agents could “re-plan” if the providers of other

9

4 nDrites: Enabling Laboratory Resource Multi-Agent Systems

services discovered problems in their provision, such as failure, or unavailability. An
interesting aspect of this workflow planning approach was the use of autonomously
requesting redundant services for particularly critical or failure-prone tasks (thus in-
creasing the probability of success). However, to facilitate the notion of autonomous
control, the services themselves need to be endowed with the necessary capabilities to
be self monitoring (and thus self aware), discoverable, and communicable [20].

The notion of agents supporting the management of laboratory services through in-
teroperation and workflow (either defined a-priori or dynamically at runtime) is only
possible if the agents describe and publish their capabilities, using some discovery
mechanism [7]. Although many formalisms (such as UDDI, JINI, etc) have been pro-
posed to support white and yellow page discovery systems, the discovery of agent-based
capabilities based on knowledge-based formalisms describing inputs, outputs, precon-
ditions and effects was pioneered by Sycara et. al. in the work on LARKS [26], and later
with the Profile Model within OWL-S [1] and the machinery required to discover them
[21]. However, before these descriptions and their underlying semantics can be defined,
a formal model of the agent capabilities, and their properties should be modelled.

In the above previous work on the automation of process models and workflows
using MAS technology, it was assumed that communication services would either be
provided by some common or standardised interfaces or through some kind of mediator
[27]. However, as noted in the introduction to this paper, there is no agreed commu-
nication standard currently in existence, nor is there likely to be so; whilst currently
available mediators are limited to bespoke systems such as CSols’ L4L system. Hence
the nDrite concept as proposed in this paper.

3 The Laboratory Resource Multi-Agent System Framework

A high level view of the proposed nDrite facilitated Laboratory Resource Multi-Agent
System (LR-MAS) framework is presented in Figure 23, where various laboratory re-
sources are connected to nDrites, including: (i) two laboratory instruments (laser ab-
lation systems, auto-samplers, mass spectrometers, etc.), (ii) a Laboratory Instrument
Management System (LIMS) and (iii) a “links for LIMS” system (CSols’ legacy mech-
anism for achieving instrument connectivity to LIMS, but still in operation). The figure
also shows two users and a number of agents; for of which are connected directly to
one or more nDrites. Two provide linkages between pairs of laboratory resources, and
another two others are simply “front ends” to resources. The two remaining agents are
application agents, not directly connected to nDrites: one is an Instrument Failure pre-
diction agent and the other an Analytical Monitoring agent. We introduce Ag to denote
the set of all possible agents in a LR-MAS, where Ag = {ag1, ag2, . . . , agn}.

As noted in the introduction to this paper the interconnectivity between agents and
laboratory resources in our LR-MAS is facilitated by the nDrite smart agent enablers
(see Figures 1 and 2). The nDrites can be considered to be wrappers for laboratory
resources in the sense that they “wrap” around a laboratory resource to make the labo-
ratory resource universally accessible within the context of a MAS (LR-MAS). As such,

3 This figure represents a high level vision; in practice the connectivity/operation will be more
restrictive for reasons of data confidentiality and business efficacy.

10

nDrites: Enabling Laboratory Instrument Multi-Agent Systems 5

Fig. 2. nDrite facilitated Laboratory Resource Multi-Agent System (LR-MAS) configuration

nDrites can be viewed as being both the agent actuators and sensors for the laboratory
resources with which they may be paired. This section provides detail of the nature
of nDrites. More specifically, a formalism is presented to enable the LR-MAS vision
given above. The section is organised as follows. Sub-sections 3.1 and 3.2 present the
formalism with respect to laboratory resources and nDrites (in their role as actuators
and sensors), respectively.

3.1 Laboratory Resources

As already noted, individual laboratories comprise a number of laboratory resources.
We introduce the set of laboratory resources as L = {L1, L2, . . . , Ln}. Each laboratory
resource has a set of one or more actions that the laboratory resource can perform.
The complete set of possible actions that laboratory resources can perform is denoted
by Ac = {α1, α2, . . . , αn}. To find the set of actions an individual resource Li can
perform we use the partial action function LRact : L 7→ 2Ac. Given that there are many
different types of laboratory resources (laboratory instruments, robots, data systems,
and so on) resources can be grouped into a set of categories T = {T1, T2, . . . , Tn},
where each Ti is some subset of L (Tj = {Lp, Lq, . . . , Lz}). Each category is referred
to as a laboratory resource type. Thus ∀Tj ∈ T , Tj ⊆ L and ∀Li ∈ Tj , Li ∈ L.
The intersection of the actions of all laboratory resources of a particular laboratory
resource type are called the critical actions for that type, denoted Ac∩Tj where for type
Tj :

⋂
∀Li∈Tj

LRact(Li) = Ac∩Tj . Note that individual resources can feature other
individual actions that are not shared through the critical action set.

3.2 nDrites

The principal function of nDrites is to provide MAS connectivity without exposing
the detailed operation of individual laboratory resources of many different kinds and
the many different data formats. Recall that laboratory instruments are produced by

11

6 nDrites: Enabling Laboratory Resource Multi-Agent Systems

many different vendors each using proprietary data formats; there are no standardised
language or communication protocols for these different resources. Therefore, nDrites
are used as wrappers for laboratory resources to provide a standardised method for
communicating data from, and exerting control over, every nDrite enhanced laboratory
resource. As such, nDrites can be viewed as both actuators and sensors. A formal defi-
nition of the operation of nDrites is presented below: initially in the context of nDrites
as actuators and later in the context of nDrites as sensors.

nDrites as Actuators The set of nDrites are denoted as Den = {D1, D2, . . . , Dn},
and the set of possible nDrite actions that the complete set of nDrites Den can expose
is Dc = {δ1, δ2, . . . , δn}. The following partial nDrite action function defines the set
of nDrite actions that a given nDrite can expose DenAct: Den 7→ 2Dc. Some nDrite
actions may only be possible with respect to particular laboratory resources, others will
be critical actions shared across a single laboratory resource type or a number of types.
To find the set of laboratory resource types to which an nDrite action may be applied we
use the function pos : Dc 7→ 2T . Actions may also be sequenced to define workflows.

Each nDrite action δi requires a corresponding action object, which details all the
necessary parameters for δi to operate successfully. The set of nDrite action objects is
Oa = {oa1, oa2, . . . , oan}. Each nDrite action object has a class type whereby each
object belongs to a class which in turn defines the nature of the object. The set of nDrite
object class types is given by Ot = {ot1, ot2, . . . , otn}. The class type of each nDrite
action object is found by the following function type: Oa 7→ Ot. To find out which
class type is required for each nDrite action δi, we use the object requirement function
req: Dc 7→ Ot (we assume only one object type is required for each nDrite action).

Recall that individual laboratory resources are likely to perform individual actions in
different ways. Hence, at the resource end, nDrites have bespoke interfaces (see Figure
1). As such, nDrites are paired with individual laboratory resources (recall Figure 2).
An nDrite Dj and a laboratory resource Li that are connected together are thought of
as an agent enabling pair: AEPk = (Li, Dj). The set of all agent enabling pairs is
defined as AEP = {AEP1, AEP2, . . . , AEPn}.

Consequently, given an nDrite-laboratory resource pairing, the nDrite functionality
can be mapped onto the resource functionality. Additionally, note that an nDrite action
δi for an nDrite may also include additional software only actions. A software only ac-
tion is an operation performed internally to the nDrite itself with no engagement with
its paired laboratory resource (for example “return the nDrite identification number”).
The set of software only actions are S = {s1, s2, . . . , sn}. Therefore nDrite actions
map onto zero, one or many laboratory resource actions and zero, one or many soft-
ware only actions4. To find the set of laboratory resource and/or software only actions
that occur when an nDrite action is called, we use the partial nDrite exposure function
exp: Aep × Dc 7→ 2Ac ∪ 2S . Given Li ∈ Tk then ∀δk where Tk /∈pos(δk), the
following holds: exp((Li, Dj), δk) = ∅. That is, zero laboratory resource and software
only actions occur when an nDrite action δk is attempted to be invoked on an nDrite
that cannot perform it. Should an nDrite Dj want to perform an action ac ∈ Ac on

4 Note that the number of exposed nDrite actions can therefore be greater than the number of
instrument actions.

12

nDrites: Enabling Laboratory Instrument Multi-Agent Systems 7

its paired laboratory resource Li, then it calls the function Perform(ac, Li). Should
an nDrite Dj want to perform an action ac ∈ S on itself, then it calls the function
Perform(ac,Dj). In both cases a Boolean is returned to indicate whether the action
was successful (true) or not (false). We do not describe in detail what occurs in the
Perform function due to the bespoke interface with the laboratory resource.

To summarise, nDrites can expose all possible actions that a laboratory resource can
provide, as well as expose more software only actions. Additionally, nDrites can lower
the computational burden for associated agents by exposing sequences of software and
laboratory resource actions (workflows). In this manner, nDrites enhance the capabili-
ties of the laboratory resources that they are attached to. Of course, for agents to trigger
nDrites to perform functions, the agents must know what nDrite actions each nDrite
provides. We assume this discovery capability is provided by a yellow pages agent (see
[4]), which sits in the LR-MAS (not shown in Figure 2).

nDrites as Sensors For agents to work correctly with nDrites (and therefore the labo-
ratory resources they are connected to), nDrites need to not only be actuators but also
sensors. Therefore nDrites map laboratory resource actions into objects that can be un-
derstood in our LR-MAS. Previously we mentioned that nDrites, in their actuator role,
receive nDrite action objects, which are required for nDrites to perform actions. Con-
currently nDrites act as sensors and produce nDrite sensor objects. The set of nDrite
sensor objects are Os = {os1, os2, . . . , osn}. Each object has a class type, where the
set of object class types are defined as Ot = {ot1, ot2, . . . , otn} (note that this is the
same definition as object types for nDrite action objects). The type of each sensor ob-
ject is found by the following function type : Os 7→ Ot. The set of sensor objects that
an nDrite maps a set of laboratory resource actions onto, is found using the function
Sen: 2Ac × N 7→ 2Os, where the natural number represents the current time point.

Every nDrite Dj collects the nDrite sensor objects it generates in an associated
nDrite sensor database (SDBj)5 that grows monotonically over time (timepoint t = 1
occurs when the nDrite is turned on). Depending on the end users needs, nDrite sensor
databases can be local to the nDrite itself, sit on a laboratory server, or be in the cloud.
The sensor database is defined as:
Definition 1: nDrite Sensor database. : The database SDBj for an agent enabling
pair (Li, Dj) holds a set of nDrite objects Osi (where Osi ⊆ Os), that have been
generated by Dj because Li has performed the actions LAc (where LAc ⊆ Ac).

SDBt
i =

{
∅ iff t = 0,
SDBt−1

i ∪ Sen(LAc, t) iff t > 0 and Sen(LAc, t) 6= ∅,

For nDrites to be sensors for agents, an agent needs to be able to access the objects
in the nDrites database. Therefore, included in the software only actions of each nDrite
are the following database access functions:

– GetObjectsByOccurancesi(2Ag×2Ot×N) 7→ 2Os. Returns the most recent
n objects of the given object types that occurred in the SDBi where n ∈ N.

5 Additionally there exists an nDrite action database for an nDrite Dj , denoted ADBj , which
holds nDrite action objects.

13

8 nDrites: Enabling Laboratory Resource Multi-Agent Systems

– SubscribeToObjectsi(2Ag×2Ot×N). Causes ag ∈ Ag to subscribe to receiv-
ing automatic updates concerning sensor objects, saved by nDriteDi in its database
SDBi, which are of the desired object types, until the given timepoint n ∈ N.

– UnSubscribeFromObjectsi(2Ag×2Ot×N). Causes ag ∈ Ag to unsubscribe
to receiving automatic updates concerning sensor objects, saved by nDrite Di in
its database SDBi, which have the desired object types, until the given time point
n ∈ N. If n = 0, then the agent is completely unsubscribed.

Additional functions required for the nDrites to operate successfully as agent sensors
are as follows:

– GetSubscribersi(2
Ot) 7→ 2Ag . Receives a set of object types and returns the

set of agents that have subscribed to these object types.
– GetNextAction(L×N) 7→ Ac. Receives a single laboratory resource and a time

limit n ∈ N, and returns the next laboratory action that occurs before the timelimit.
If the laboratory resource performs no recognised action within the time limit then
null is returned.

– Connected(2Ac×2Ac) 7→ {true, false}. Returns whether the first set of labora-
tory resource actions are connected to the second set of laboratory resource actions
(true) or not (false). The two sets are connected if: (i) they form a series that can
be converted into an nDrite sensor object; or (ii) they form a series that, when fur-
ther nDrite sensor objects are added, can be converted into an nDrite sensor object.
Also, true is returned if the first set of laboratory resource actions are the empty
set. False is returned if the second set of laboratory resource actions are the empty
set or if both sets are empty.

– nDriteAdvertisingObjectsi(2
Ot) → {true, false}. Returns whether Di

is advertising that it can update the agents on the given set of object types (true)
or not (false). Again, it is assumed that this advertisement is performed using a
yellow pages agent.

– CollectSensorObjectsi(N) → 2Os. Returns the objects from the database
SDBi that have occurred since the time point n ∈ N.

4 LR-MAS Communication

So far we have shown that nDrites have the available functionality to be agent actuators
and sensors. Note that the nDrite concept isn’t simply allowing an agent to perform
an action and then observe the result. nDrites allow agents to subscribe to nDrite ob-
jects, which may be generated from real world actions (e.g. a user turns an instrument
off), or from other agents (e.g. another agent requests the instrument to analyse some
samples). Different agents maybe interested in different actions, and so a complicated
LR-MAS occurs. As nDrites are separate software entities to agents, there needs to be
a communication mechanism available for the agents to utilise the actuator and sensor
capabilities of the nDrites. In 4.1, we detail the message syntax between nDrites and
agents. Note that the associated message syntax for agent to agent communication is
considered to be out of the scope of this paper, however this can clearly be achieved us-
ing a FIPA compliant agent communication language. Sub-sections 4.2 and 4.3 show:

14

nDrites: Enabling Laboratory Instrument Multi-Agent Systems 9

(i) how nDrites, in their role of agent actuators, handle incoming messages; and (ii) how
nDrites, in their role as agent sensors, produce messages that get sent to agents. Finally,
Sub-section 4.4 gives a brief definition for LR-MAS agents.

4.1 nDrite Message Syntax

The LR-MAS given in Figure 2 features a set of communicating entities (agent-nDrite
pairs). Messages are sent between these entities, from the set of possible messages,
denoted by M = {m1,m2, . . . ,mn}. Each message contains meta deta (denoted by
MD), a set of nDrite actions and nDrite action objects pairs6 (NAP , where a single
pair is indicated by the tuple 〈δi, oak〉), and a set of nDrite sensor objects (NSO). We
assume that the meta data must include two functions Sender and Receiver that
returns an entity in either the set of nDrites Den or the set of agents Ag.

Definition 2: An nDrite system message is a tuple denoted mi = 〈MD,NAP,NSO〉
where the following holds:

1. Receiver(MD) ∈ Ag ∪Den
2. Sender(MD) ∈ Ag ∪Den
3. If Receiver(MD) ∈ Ag then Sender(MD) ∈ Den
4. If Receiver(MD) ∈ Den then Sender(MD) ∈ Ag
5. If NAP 6= ∅ then ∀〈δi, oak〉 ∈ NAP the following holds:

(a) δi ∈ Dc; (b) oak ∈ Oa; (c) oak ∈ req(δi)
6. NSO ⊆ Os

Thus an nDrite system message must have a designated receiver and sender (conditions
1 and 2). One out of the sender and receiver one must be an agent, while the other must
be an nDrite (conditions 3 and 4). For each nDrite action object pair (NAP), the nDrite
action called for must be valid (condition 5(a)), the paired nDrite action object must
be valid (condition 5(b)) and the paired nDrite action object must be required by the
nDrite action they are paired with (condition 5(c)). Finally, the nDrite sensor objects
NSO that are provided must be part of the sensor object set Os (condition 6).

4.2 Sending messages to nDrites

In the agent actuator context, the nDrites will have to deal with many incoming
messages from agents. In Algorithm 1, we present our general nDrite procedure for
dealing with an incoming message. The algorithm starts with the message being un-
packed (line 5). Then two sets are initialised, one for the set of nDrite actions that
complete successfully (line 6) and another for the nDrite actions that do not complete
successfully (line 7). As nDrites are providing wrappers for laboratory resources (in-
struments, LIMS, etc), an nDrite action can fail through no fault of the nDrite software.
For example, a laboratory instrument message could be blocked, or the server that hosts
a LIMS could fail. Therefore each nDrite records which actions have succeed and which
have failed (so as to help the error recovery process for the agents within our LR-MAS).

6 nDrite action object pairs are the objects that are saved in the nDrite action database.

15

10 nDrites: Enabling Laboratory Resource Multi-Agent Systems

Algorithm 1: The nDriteReceive algorithm that handles an incoming mes-
sage for the nDrite Dj that is paired with the laboratory resource Li.

1: function nDriteReceive(mi)
2: Input: 〈mi〉; where mi is the received message.
3:
4: begin;
5: mi = 〈MDi, NAPi, ∅〉; // Unpack the message. No sensor objects from agents
6: succ = ∅; // Set of successful actions
7: fail = ∅; // Set of failed actions
8: p = 0; // Integer count variable for nDrite actions
9: t = 0; // Current timestamp that automatically updates

10: complete = false; // Boolean that notes whether the last action completed or not
11: osj ⊂ Os; // nDrite sensor object defined
12:
13: if Receiver(MDi) 6= Dj then
14: return null; // If this nDrite is not the intended recipient then quit
15: end if
16: while p < |NAP | do
17: 〈δ, oak〉p ∈ NAP ;
18: if δ ∈ DenAct(Dj) and (oak = req(δ)) then
19: q = 0; // Integer count variable for individual actions
20: ADBt

j = ADBt−1
j ∪ 〈δ, oak〉p;

21: while q < |exp((Li, Dj), δ)| do
22: acq ∈ exp((Li, Dj), δ);
23: if acq ∈ S then
24: complete =Perform(acq, Dj); // I.e. acq is a software only action
25: else
26: complete =Perform(acq, Li); // I.e. acq is a laboratory resource action
27: end if
28: if complete = true then
29: 〈δi, error information〉 ∈ fail;
30: else
31: 〈δ, success information〉 ∈ succ;
32: end if
33: q + +;
34: end while
35: else
36: 〈δi, error information〉 ∈ fail;
37: end if
38: p+ +;
39: end while
40: fail, succ ∈ osj ; // Add the success and fail information to an nDrite sensor object
41: mj = 〈MDj , ∅, {osj}〉; // Add sensor object to return message
42: Receiver(MDj) = Sender(MDi);
43: Sender(MDj) = Receiver(MDi);
44: Send mj ;
45: end;

16

nDrites: Enabling Laboratory Instrument Multi-Agent Systems 11

The first thing an nDrite should check when a message is received, is whether it
was the intended receiver (line 13 in Algorithm 1). If it was not the intended receiver
the message is ignored (line 14), otherwise the message is processed (line 16 onwards).
When processing the message, the nDrite takes one nDrite Action-object Pair (〈δ, oak〉)
at a time (line 17). If this nDrite can perform the required nDrite action δ, and the
required nDrite action object has been received (line 18), then δ is processed. When-
ever an nDrite action object pair is to be processed, this is saved into the nDrite action
database (line 20), so that a record of the system history is available. The nDrite pro-
cesses δ by converting it into a sequence of laboratory resource and software actions
via the exp function (line 20). If the next action acq is a software action, then it is
performed on the nDrite (line 24), otherwise it is performed on the laboratory resource
(line 26). The boolean complete stores details on whether acp completed successfully.
If any of the actions from the exp function are unsuccessful, then the original nDrite
action δ (and information on the error) are added to the list of nDrite actions that failed
(line 29), otherwise the original nDrite action δ is added to the list of nDrite actions that
succeeded (line 31). This process continues until all the nDrite actions in the NAP set
have been dealt with (line 16)7. Finally, the nDrite builds and sends a message mj to
inform the agent of what actions succeeded and what failed (lines 40 to 44).

4.3 Sending Messages to Agents

In the context of nDrites operating as sensors for agents, Algorithm 2 presents the
general nDrite sensor algorithm. The algorithm takes as input the laboratory resource
Li that is pared with the nDriteDj . Therefore the agent-enabling pair is set as (Li, Dj).
The algorithm begins by launching a database monitoring thread (line 9), the purpose
of which is to monitor this nDrite’s sensor database and send updates to the subscrib-
ing agents once sensor objects of the correct type appear in the database (this thread is
described in more detail later). The main function then processes sequences of labora-
tory resource actions (describing a workflow) until termination (line 10). The Φ variable
holds the current laboratory resource action series (workflow) that is being recorded8.
This action series is initially set to empty (line 8).

When processing an action series (workflow) the first laboratory resource action is
added to the current laboratory action series, as the Connected function always re-
turns true when the current series is empty (line 12 and 13). Next the nDrite checks
whether it advertises that it can update agents on the nDrite sensor objects that would
appear from the conversion of the current action series (line 23). If so, these converted
objects are added to the nDrite’s sensor database (line 24), as monitored through the
nDriteMonitorDB function. Next the nDrites waits until timelimit for the next

7 Note that if the instrument is currently busy, then the perform function will return false and
the agent will be alerted through the error information stored in fail.

8 A laboratory resource action sequence (workflow) can be processed by the nDrite as a col-
lection; for example a sample analysis by a laboratory instrument. Single instrument actions
can be: move to the next sample; send this sample for analysis; record sample results; move to
next sample; etc. Some of this information maybe useful to some agents who want real time
updates but other agents maybe “happy” to just have information on a collection of actions.

17

12 nDrites: Enabling Laboratory Resource Multi-Agent Systems

Algorithm 2: The nDriteMonitor algorithm allows the nDrite Dj to mon-
itor the laboratory resource Li and convert any laboratory resource actions into
LR-MAS understandable nDrite sensor objects. Once converted, the nDrite will
update any agents that have subscribed to these nDrite sensor object types.

1: function nDriteMonitor(Li)
2: Input: 〈Li〉; where Li is the Laboratory resource to monitor.
3:
4: begin;
5: p = 0; // Integer count variable for nDrite action
6: t = 0; // Current timestamp that automatically updates
7: timelimit // A predefined integer to wait for the next lab resource action
8: Φ = ∅; // Laboratory action series initialised
9: start nDriteMonitorDB() in new thread

10: while nDrite not terminated do
11: αp = GetNextAction(Li, timelimit)
12: if Connected(Φ, {αp}) then
13: Φp = αp; // Action is added to action series
14: p+ +;
15: else if αp 6= null then
16: Φ = ∅; // This action series has ended
17: Φ0 = αp; // A new action series is initialised with the last action
18: p = 1;
19: else
20: Φ = ∅; // This action series has ended
21: p = 0;
22: end if
23: if nDriteAdvertisingObjects(type(Sen(Φ, t))) then
24: SDBt

j = SDBt−1
j ∪ Sen(Φ, t);

25: end if
26: end while
27: end;
28:
29: function nDriteMonitorDB()
30: begin;
31: Integer s = 0; // Last timestamp checked
32: while nDrite not terminated do
33: Γ = CollectObjects(s);
34: s = current time;
35: for each osi ∈ Γ do
36: for each agj ∈ Subscribers(type(osi)) do
37: mk = 〈MD, ∅, {osi}〉;
38: Sender(MD) = Dj ; Receiver(MD) = agj ;
39: send mk;
40: end for
41: end for
42: end while
43: end;

18

nDrites: Enabling Laboratory Instrument Multi-Agent Systems 13

laboratory resource action in the series occurs (line 11). If it does not occur before
timelimit then the laboratory resource action will be set to null (the current workflow
has been completed), so Connected will return false (line 12) and the actionSe-
quence will be broken (line 20 and 21). Conversely if another laboratory action is found
within the time limit (line 11), then if Connected returns true, the new action αp is
added to the sequence Φ and the process continues (lines 13 and 14). If Connected
returns false, then αp is not added to the current sequence, which completes (line 16),
and instead, αp becomes the first action of a new sequence (lines 17 and 18).

The nDriteMonitorDB thread continues to run until the nDrite terminates. The
first part of the continuous loop collects nDrite sensor objects into Γ , which have oc-
curred in this nDrite’s database since the last time it checked (line 33). The last check
time is then updated (line 34). For every nDrite sensor object osi found (line 35), and for
each agent agj that subscribes to updates concerning the objects of the type type(osi)
(line 36), a message is sent to each agent agj to inform it of the update (lines 37 to 39).

4.4 Definition of LR-MAS Agents

As discussed, there are extensive possibilities for LR-MAS agents, so we make no as-
sumptions regrading their structure. At a highlevel, LR-MAS agents are defined as:
Definition 3: An nDrite enabled LR-MAS agent is an autonomous software compo-
nent that:

– Takes as input messages of the form 〈MD,NAP,NSO〉
– Sends messages of the form 〈MD,NAP,NSO〉

How agents interpret nDrite sensor objects, and why they would build nDrite action
objects is entirely up to them. Individual agents can perform a variety of tasks limited
only by the nDrite actions implemented. The current classes of agent focused on for
production are: (i) Discovery Agents, (ii) System Configuration Agents, (iii) Analytical
Monitoring Agents and (iii) Instrument Monitoring Agents. We now provide two real
world examples of nDrite usage (the two App agents in Figure 2). As Figure 2 shows,
these two agents can be present in the same LR-MAS and connect to the same nDrites.

5 The Analytical Monitoring Case Study (Case Study 1)

Our first case study is focused on the “AutoDil agent” currently in operation (Figure 2).
AutoDil uses two nDrites: (i) an Inductively Coupled Plasma Mass Spectrometer (ICP-
MS) nDrite, denoted Dicp, and (ii) an autosampler nDrite9, denoted Das. The purpose
of the AutoDil agent is to ensure any samples from the autosampler found to be “over-
range” by the ICP-MS instrument are rediluted and sent for reanalysis. An ICP-MS
analyses many samples, one after the other. A collection of samples is know as a run.
When a run has been completed many laboratory resource actions have been performed,
which are converted by the ICP-MS nDrite Dicp (through Dicp’s nDriteMonitor
function), into a run results nDrite sensor object osrx of the type otrr.

9 An autosampler automatically feeds a liquid sample into an ICP-MS.

19

14 nDrites: Enabling Laboratory Resource Multi-Agent Systems

For the AutoDil agent agad to do its job, it must subscribe to nDrite sensor ob-
jects of the type otrr from the ICP-MS instrument nDrite Dicp. Note that Dicp will
have advertised that it can update agents with respect to objects of the type otrr, thus
nDriteAdvertisingObjects({otrr}) = true. When agad receives an nDrite
sensor object osry of type otrr, then it should analyse osry to see if any samples in
the results run need redilution. Whenever agad finds samples that require redilution, it:

1. Builds an nDrite action object oax that includes information on the dilution amounts
for each sample and calls the AddDilutions nDrite action in Das by construct-
ing the messagemp = 〈MD, 〈 AddDilutions, oax 〉, ∅〉, where Receiver(mp)
= Das and Sender(mp) = Agad.

2. Builds an nDrite action object oay that includes information on which samples to
be reanalysed and calls the SetupRun nDrite action in Dicp by constructing the
message mp = 〈MD, 〈 SetupRun, oaj 〉, ∅〉, where Receiver(mp) Dicp and
Sender(mp) = Agad.

After performing both (1) and (2), the agad waits for new objects from the ICP-MS
nDrite, which may including information on samples that required further dilution.

The nDrites will deal with messages (1) and (2) through their nDriteReceive
function. The nDrite Das will convert the nDrite action AddDilutions through the
exp function, to actions that its paired autosampler can understand. The purpose of
these converted actions will be to tell the autosampler which samples require what level
of dilution. The nDrite Dicp will convert the nDrite action SetupRun, again through
the exp function, to actions that its paired ICP-MS instrument can understand. The
purpose of these actions will be to tell the ICP-MS instrument what samples it should
load from the autosampler (and therefore what data it will be collecting). The nDrites
will then report to agad what actions were successful. If all were successful then the
autoDil agent knows that it should soon expect another run results nDrite sensor object
osrz of type otrr, which will hold information on the diluted samples.

6 The Instrument Failure Prediction Case Study (Case Study 2)

The second case study is an instrument failure prediction scenario where a dedicated
agent (see Figure 2) is used to predict instrument failure using a data stream classi-
fier trained for this purpose (as proposed in [3]). This agent is currently under devel-
opment. Instrument failure within analytic laboratories can lead to costly delays and
compromise complex scientific workflows [23]. Many such failures can be predicted by
learning a failure prediction model using some form of data stream mining, which is
concerned with the effective, real time, capture of useful information from data flows
[11–13]. A common application of data stream mining is the analysis of instrument
(sensor) data with respect to some target objective [5, 6]. There is little work on using
data stream mining to predict the failure of the instruments (sensors) themselves other
than [3] which describes a mechanism whereby data stream mining can be applied to
learn a classifier with which to predict instrument failure. In our LR-MAS, an instru-
ment failure prediction app agent implements the mechanism of [3] by communicating
with other agents that are connected to nDrites (referred to as Dendrites in [3]).

20

nDrites: Enabling Laboratory Instrument Multi-Agent Systems 15

7 Conclusions

We have described a mechanism to realise the benefits of MAS in the context of an-
alytical laboratories where laboratory resources are not readily compatible with the
technical requirements of MAS. Our solution is the concept of nDrites, “smart agent
enablers”, that at one end feature bespoke laboratory resource connectivity while at the
other end feature a generic interface usable by agents of all kinds. The vision is that of a
Laboratory Resource MAS (LR-MAS). The operation of nDrites was fully described in
the context of: laboratory resources, nDrites as agent actuators, nDrites as sensors, the
communication mechanisms and the associated agents. The utility of nDrites was illus-
trated in two case studies: (i) an analytical monitoring case study for an “AutoDil agent”
currently in operation; and (ii) a instrument failure prediction case study, featuring mon-
itoring agents, that is currently under development. We believe that the proposed nDrite
concept will enable the interconnected scientific laboratories of the future.

Acknowledgements

This work was conducted as part of the “Dendrites: Enabling Instrumentation Connec-
tivity” Innovate UK funded knowledge transfer partnership project (KTP009603).

References

1. Ankolekar, A., Burstein, M., Hobbs, J. R., Lassila, O., Martin, D. L., McDermott, D., McIl-
raith, S. A., Narayanan, S., Paolucci, M., Payne, T. R. and Sycara, K. DAML-S: Web Service
Description for the Semantic Web. Proc. of ISWC, 2002.

2. Ashri, R., Payne, T. R., Luck, M., Surridge, M., Sierra, C., Aguilar, J. A. R. and Noriega, P.
Using Electronic Institutions to secure Grid environments. 10th International Workshop on
Cooperative Information Agents. p461-475, 2006.

3. Atkinson, K., Coenen, F., Goddard, P., Payne, T and Riley, L. Data Stream Mining with Lim-
ited Validation Opportunity: Towards Instrument Failure Prediction. 17th Int’l Conference
on Big Data Analytics and Knowledge Discovery, Springer LNCS, p283-295, 2015.

4. Bellifemine, F. L., Caire, G. and Greenwood, D. Developing Multi-Agent Systems with JADE
(Wiley Series in Agent Technology) John Wiley & Sons, 2007.

5. Cohen, I., Goldszmidt, M., Kelly, T., Symons, J. and Chase, J.S. Correlating Instrumentation
Data to System States: A Building Block for Automated Diagnosis and Control. Proc 6th
Symposium on Operating Systems Design and Implementation, p231-244, 2004.

6. Cohen, L., Avrahami-Bakish, G., Last, M., Kandel, A., and Kipersztok, O. Real Time Data
Mining-Based Intrusion Detection. Information Fusion, 9(3), p344-354., 2008.

7. Decker, K., Sycara, K. and Williamson, M. Middle-agents for the Internet. 15th International
Joint Conference on Artificial Intelligence (IJCAI’97), p578-583, 1997.

8. De Roure, D., Jennings, N.R. and Shadbolt, N. The Semantic Grid: A Future e-Science In-
frastructure. Grid Computing-Making the Global Infrastructure a Reality, p437-470, 2003.

9. Foster, I., Jennings, N. R. and Kesselman, C. Brain meets Brawn: why Grid and Agents need
each other. In Proc of. AAMAS, p8-15, 2004.

10. Frey, J.G., De Roure, D., schraefel, M.C., Mills, H., Fu, H., Peppe, S., Hughes, G., Smith,
G. and Payne, T. R. Context Slicing the Chemical Aether. 1st International Workshop on
Hypermedia and the Semantic Web, Nottingham, UK, 2003.

21

16 nDrites: Enabling Laboratory Resource Multi-Agent Systems

11. Gaber, M. M., Zaslavsky, A. and Krishnaswamy S. Mining Data Streams: A Review. ACM
SIGMOD Record, 34(2), p18 - 26, 2005.

12. Gaber, M. M., Gama, J., Krishnaswamy, S., Gomes, J.B. and Stahl, F. Data Stream Mining in
Ubiquitous Environments: State-of-the-Art and Current Directions. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery; 4(2), p116-138, 2014.

13. Gama, J (2010). Knowledge Discovery from Data Streams. Chapman and Hall.
14. Gil, Y. From data to knowledge to discoveries: Artificial intelligence and scientific work-

flows. Scientific Programming 17(3): p231-246, 2009.
15. Hamdaqa, M. and Tahvildari, L. Cloud Computing Uncovered: a Research Landscape. Ad-

vances in Computers 86: p41-85, 2012.
16. Jacyno, M., Bullock, S., Geard, N., Payne T. R., and Luck, M. Self-Organising Agent Com-

munities for Autonomic Resource Management. Adaptive Behaviour Journal. 21 (1), p3-28,
2013.

17. Lawley, R., Luck, M., Decker, K., Payne, T. R. and Moreau, L. Automated Negotiation Be-
tween Publishers and Consumers of Grid Notifications. Parallel Processing Letters, 13 (4).
p537-548, 2003.

18. Merelli, E., Armano, G., Cannata, N., Corradini, F., d’Inverno, M., Doms, A., Lord, P., Mar-
tin, A., Milanesi, L., Moller, S., Schroeder, M., Luck, M. Agents in Bioinformatics, Compu-
tational and Systems Biology. Briefings in Bioinformatics, 8(1), p45-59, 2007.

19. Oinn T., Greenwood M., Addis, M., Alpdemir, M. N., Ferris, J., Glover, K., Goble, C.,
Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M. R., Senger, M., Stevens,
R., Wipat, A., and Wroe, C. Taverna: Lessons in Creating a Workflow Environment for the
Life Sciences. Concurrency and Computation: Practice and Experience, 18(10), p1067-1100,
2006.

20. Payne, T. R. Web Services from an Agent Perspective. IEEE Intelligent Systems, 23(2), 2008.
21. Paolucci, M., Kawamura, T., Payne, T. R. and Sycara, K. Semantic Matching of Web Services

Capabilities. Proceedings of the 1st International Semantic Web Conference (ISWC), 2002
22. Schraefel, M. C., Hughes, G., Mills, H., Smith, G., Payne, T. and Frey, J. Breaking the Book:

Translating the Chemistry Lab Book into a Pervasive Computing Lab Environment. SIGCHI
Conference on Human Factors in Computing Systems, April 24-29, Vienna, Austria, 2004.

23. Stein, S., Payne, T.R. and Jennings, N.R. Flexible QoS-Based Service Selection and Provi-
sioning in Large-Scale Grids. UK e-Science All Hands Meeting, HPC Grids of Continental
Scope, 2008.

24. Stein, S., Payne, T. R. and Jennings, N. R. Flexible Selection of Heterogeneous and Unre-
liable Services in Large-Scale Grids. Philosophical Transactions of the Royal Society A:
Mathematical, Physical & Engineering Sciences, 367 (1897). p2483-2494, 2009.

25. Stein, S., Payne, T. R. and Jennings, N. R. Robust Execution of Service Workflows using
Redundancy and Advance Reservations. IEEE Trans. Services Computing. 4(2), 2011.

26. Sycara, K., Widoff, S., Klusch, M. and Lu, J. LARKS: Dynamic Matchmaking Among Het-
erogeneous Software Agents in Cyberspace. AAMAS, 5(2), 173-203, 2002.

27. Szomszor, M., Payne, T. R. and Moreau, L. Automated Syntactic Medation for Web Service
Integration. In: IEEE International Conference on Web Services, Chicago, USA, 2006.

28. Wassink, I., Rauwerda, H., Vet, P., Breit, T., and Nijholt, A. E-BioFlow: Different Perspec-
tives on Scientific Workflows. Bioinformatics Research and Development: Second Interna-
tional Conference, Vienna, Austria, July 7-9, 2008.

29. Wens, D., Michel, F. Agent Environments for Multi-agent Systems - A Research Roadmap.
Agent Environments for Multi-Agent Systems IV: 4th International Workshop, E4MAS 2014
- 10 Years Later, p3-21, 2014.

22

Data and Norm-aware Multiagent Systems for
Software Modularization

(Position Paper)

Matteo Baldoni1, Cristina Baroglio1, Diego Calvanese2,
Roberto Micalizio1, and Marco Montali2

1 Università degli Studi di Torino — Dipartimento di Informatica
c.so Svizzera 185, I-10149 Torino (Italy)

{firstname.lastname}@unito.it
2 Free University of Bozen-Bolzano — KRDB Research Centre

Piazza Domenicani 3, I-39100 Bolzano, Italy c.so Svizzera 185, I-10149 Torino (Italy)
lastname@inf.unibz.it

Abstract. This work surveys the key proposals to the modularization
of software, and trace them back to the common ground provided by
Meyer’s three forces of computation: processor, object, and action. We
advocate that a paradigm should provide a good balance in exploiting all
such forces, and support this stance by explaining the weaknesses of the
examined proposals. Then, we focus on the agent paradigm because it
emerges as pivotal for the achievement of a good balance. We trace direc-
tions that we think should be followed in order to complete the model,
identifying, in particular, in data-awareness jointly with a norm-based
representation of how data evolution is governed the key advancements
that would bring to fullness the modularization of software.

1 Introduction

Research on agents and multiagent systems introduced many abstractions and
tools to help designing modularized software, e.g., organizations, interaction pro-
tocols, artifacts, norms. This work provides a wide and systematic account of
the major approaches to modularization, that were developed both by research
on multiagent systems and by other research communities, leveraging Meyer’s
three forces of computation [31] as reference dimensions, along which all the
considered proposals are positioned. The aim of this survey is to identify the
lacks of the state of art together with possible directions of research. The paper
is so organized. Section 2 introduces Meyer’s forces of computation. Section 3
shows how functional decomposition, object-orientation, the actor model, busi-
ness processes, artifact-centric approaches can be seen as manifestations of either
the processor force or of the object force. Section 4 explains the strengths and
the lacks of proposals from research area on agents. Section 5 explains the value
of the action force, considered as ancillary by most of the examined approaches.
Section 6 traces as open directions of research data and information-awareness

23

jointly with an extended norm-based representation that includes rules that gov-
ern the environment. Conclusions end the paper.

2 Meyer’s forces: Processor, Action and Object

ob
jec

t/
da

ta
action/instruction

p
ro

c
e
ss/

th
re

a
d

Fig. 1. Meyer’s three forces of computation [31, Chapter 5, page 101].

The goal of software engineering is the production of quality software [31].
Among the desired qualities, correctness is the ability of software products to
perform their tasks as defined by their specification; robustness is the ability to
react appropriately to abnormal conditions; extensibility is the ease of adapting
software products to changes of specification; reusability is the ability of software
elements to serve for the construction of many different applications. In order
for software to show these properties, it is necessary to identify proper modular-
ization mechanisms that allow the programmer to design and develop software
in a systematic way. To evaluate a modularization mechanism, one should not
only consider how easy it is, by adopting it, to obtain a software module from
scratch, but also how easy it is to maintain that software over time. We de-
cided to use Meyer’s forces of computation as a common ground for comparing
the different proposals because they provide a neutral touchstone, unrelated to
any specific programming approach or modularization mechanism. According to
Meyer, three forces are at play when we use software to perform some computa-
tions (see Figure 1): processors, actions, and objects. A processor can be a process
or a thread (in the paper we use both the terms processor and process to refer
to this force); actions are the operations that make the computation; objects are
the data to which actions are applied.

A software system, in order to execute, uses processes to apply certain ac-
tions to certain objects. The form of the actions depends on the considered level

24

of granularity: they can be instructions of the programming language as well as
they can be major steps of a complex algorithm. Moreover, the form of actions
conditions the way in which processes operate on objects. Some objects are built
by a computation for its own needs and exist only while the computation pro-
ceeds; others (e.g., files or databases) are external and may outlive individual
computations. In the following we analyse the most important proposals con-
cerning software modularization, showing how they (sometimes implicitly) give
more or less strength to Meyer’s forces, and the drawbacks that follow.

3 Processor vs. Object: the big fight

It becomes apparent that processor and object are the two principal forces along
which most approaches to modularization have been developed so far, while the
action force remained subsidiary to one or another.

Functional Decomposition. The top-down functional decomposition is probably
the earliest approach to building modularized software; it relies on a model that
puts at the center the notion of process; namely, the implementation of a given
function is based only on a set of actions made of instructions, provided by the
programming language at hand, possibly in combination with previously defined
functions [31]. Top-down functional decomposition builds a system by stepwise
refinement, starting with the definition of its abstract function. Each refinement
step decreases the abstraction of the specification. With reference to Figure 1,
the approach disregards objects/data, just considered as data structures that are
instrumental to the function specification and internal to processes. Actions are
defined only in terms of the instructions provided by the programming language
and of other functions built on top of them (subroutines), into which a process is
structured. All in all, this approach is intuitive and suitable to the development
of individual algorithms, in turn aimed at solving some specific task, but does not
scale up equally well when data are shared among concurrent processes because
it lacks abstractions to explicitly account for such data and their corresponding
management mechanisms.

Object-Orientation. The Object-Oriented approach to modularization results
from an effort aimed at showing the limits of the functional approach [31]. Ob-
jects (data) often have a life on their own, independent from the processes that
use them. Objects become, then, the fundamental notion of the model. They
provide the actions by which (and only by which) it is possible to operate on
them (data operations). This approach, however, disregards processes and their
modularization both internally and externally to objects. Internally, because ob-
jects provide actions but have a static nature, and are inherently passive: actions
are invoked on objects, but the decision of which operations to invoke so as to
evolve such objects is taken by external processes. This also implies that there is
no decoupling between the use of an object and the management of that object.

25

Externally, because the model does not supply conceptual notions for compos-
ing the actions provided by objects into processes, and there is no conceptual
support to the specification of tasks, in particular when concurrency is involved.

Actor Model, Active Objects. The key concept in the actor model [28] (to which
active objects are largely inspired) is that everything is an actor. Interaction
between actors occurs only through direct asynchronous message passing, with
no restriction on the order in which messages are received. An actor is a compu-
tational entity that, in response to an incoming message, can: (1) send a finite
number of messages to other actors; (2) create a finite number of new actors;
(3) designate the behavior to be used in response to the next incoming message.
These three steps can be executed in any order, possibly in parallel. Recipients
of messages are identified by opaque addresses. Interestingly, in [28] Hewitt et
al. state that “We use the ACTOR metaphor to emphasize the inseparability
of control and data flow in our model. Data structures, functions, semaphores,
monitors, [. . .] and data bases can all be shown to be special cases of actors.
All of the above are objects with certain useful modes of behavior.” The actor
model decouples the sender of a message from the communications sent, and this
makes it possible to tackle asynchronous communication and to define control
structures as patterns of passing messages.

Many authors, such as [32, 44, 35], noted that the actor model does not ad-
dress the issue of coordination. Coordination requires the possibility for an actor
to have expectations on another actor’s behavior, but the mere asynchronous
message passing gives no means to foresee how a message receiver will behave.
For example, in the object-paradigm methods return the computed results to
their callers. In the actor model this is not granted because this simple pattern
requires the exchange of two messages; however, no way for specifying patterns
of message exchanges between actors is provided. The lack of such mechanisms
hinders the verification of properties of a system of interacting actors. Similar
problems are well-known also in the area that studies enterprise application inte-
gration [1] and service-oriented computing [43], that can be considered as heirs of
the actor model and where once again interaction relies on asynchronous message
passing. There are in the literature proposals to overcome these limits. For in-
stance for what concerns the actor model. [35] proposes to use Scribble protocols
and their relation to finite state machines for specification and runtime verifi-
cation of actor interactions. Instead, in the case of service-oriented approaches,
there are proposals of languages that allow capturing complex business processes
as service compositions, either in the form of orchestrations (e.g. BPEL) or of
choreographies (e.g. WS-CDL).

The above problem can better be understood by referring to Meyer’s forces.
The actor model supports the realization of object/data management processes
(these are the internal behaviors of the actors, that rule how the actor evolves),
but it does not support the design and the modularization of processes that per-
form the object use, which would be external to the actors. As a consequence,
generalizing what [15] states about service-oriented approaches, the modular-
ization supplied by the actor model, while favoring component reuse, does not

26

address the need of connecting the data to the organizational processes: data
remains hidden inside systems.

Business Processes. Business processes have been increasingly adopted by en-
terprises and organizations to conceptually describe their dynamics, and those
of the socio-technical systems they live in. Modern enterprises [14] are complex,
distributed, and aleatory systems: complex and distributed because they involve
offices, activities, actors, resources, often heterogeneous and geographically dis-
tributed; aleatory because they are affected by unpredictable events like new
laws, market trends, but also resignations, incidents, and so on. In this light,
business processes help to create an explicit representation of how an enterprise
works towards the accomplishments of its tasks and goals. More specifically, a
business process describes how a set of interrelated activities can lead to a precise
and measurable result (a product or a service) in response to an external event
(e.g., a new order) [47]. Business processes developed for understanding how an
enterprise work can then be refined and used as the basis for developing soft-
ware systems that the enterprise will adopt to concretely support the execution
of its procedures [14, 25]. In this light, business processes become workflows that
connect and coordinate different people, offices, organizations, and software in
a compound flow of execution [1]. Among the main advantages of this process-
centric view, the fact that it enables analysis of an enterprise functioning, it
enables comparison of business processes, it enables the study of compliance to
norms (e.g. [27]), and also to identify critical points like bottlenecks by way of
simulations (e.g., see iGrafx Process3 for Six Sigma). The adoption of a service-
oriented approach and of web services helps implementing workflows that span
across multiple organizations, whose infrastructures may well be heterogeneous
and little integrated [1, 43].

On the negative side, business processes, by being an expression of the process
force, show the same limits of the functional decomposition approach. Specifi-
cally, they are typically represented in an activity-centric way, i.e., by empha-
sizing which flows of activities are acceptable, without providing adequate ab-
stractions to capture the data that are manipulated along such flows. Data are
subsidiary to processes.

Artifact-centric Process Management. The artifact-centric approach [7, 20, 15]
counterposes a data-centric vision to the activity-centric vision described above.
Artifacts are concrete, identifiable, self-describing chunks of information, the ba-
sic building blocks by which business models and operations are described. They
are business-relevant objects that are created and evolve as they pass through
business operations. They include an information model of the data, and a lifecy-
cle model, that contains the key states through which the data evolve, together
with their transitions (triggered by the execution of corresponding tasks). A
change to an artifact can trigger changes to other artifacts, possibly of a differ-
ent type. The lifecycle model is not only used at runtime to track the evolution

3 http://www.igrafx.com/.

27

of artifacts, but also at design time to understand who is responsible of which
transitions.

On the negative side, like in the case of the actor model, business artifacts
disregard the design and the modularization of those processes that operate on
them. Moreover, verification problems are much harder to tackle than in the
case where only the control-flow perspective is considered. In fact, the explicit
presence of data, together with the possibility of incorporating new data from
the external environment, makes these systems infinite-state in general [15].

4 Towards Reconciliation: Agents and the A&A
meta-model

In [40, 49], agents are defined as entities that observe their environment and
act upon it so as to achieve their own goals. Two fundamental characteristics
of agents are autonomy and situatedness. Agents are autonomous in the sense
that they have a sense-plan-act deliberative cycle, which gives them control of
their internal state and behavior; autonomy, in turn, implies proactivity, i.e.,
the ability of an agent to take action towards the achievement of its (delegated)
objectives, without being solicited to do so. Agents are situated because they
can sense, perceive, and manipulate the environment in which operate. The en-
vironment could be physical or virtual, and is understood by agents in terms
of (relevant) data. From a programming perspective, it is natural to compare
agents to objects. Agent-oriented programming was introduced by Shoham as
“a specialization of object-oriented programming” [41]. The difference between
agents and static objects is clear. Citing Wooldridge [49, Section 2.2]: (1) ob-
jects do not have control over their own behavior4, (2) objects do not exhibit
flexibility in their behavior, and (3) in standard object models there is a single
thread of control, while agents are inherently multi-threaded. Similar comments
are reported also by other authors, like Jennings [29]. However, when compar-
ing agents to actors, the behavioral dimension is not sufficient: [49, page 30]
reduces the difference between agents and active objects, which encompass an
own thread of control, to the fact that “active objects are essentially agents that
do not necessarily have the ability to exhibit flexible autonomous behavior”. In
order to understand the difference between the agent paradigm and objects it
is necessary to rely on both the abstractions introduced by the agent paradigm,
that are that of agent and that of environment [48]. Such a dichotomy does
not find correspondence in the other models and gives a first-class role to both
Meyer’s process and object force (see Figure 2). Processes realize algorithms
aimed at achieving objectives, and this is exactly the gist of the agent abstrac-
tion and the rationale behind its proactivity: agents exploit their deliberative
cycle (as control flow), possibly together with the key abstractions of belief, de-
sire, and intention (as logic), so as to realize algorithms, i.e., processes, for acting

4 This is summarized by the well-known motto “Objects do it for free; agents do it
because they want it”.

28

in their environment to pursue their goals5. Contrariwise, active objects and ac-
tors do not have goals nor purposes, even though their specification includes a
process. As we said, they are a manifestation of the object force. In the agent
paradigm the manifestation of the object force is the environment abstraction.
The environment does not exhibit the kind of autonomy explained for agents
even when its definition includes a process. Its being reactive rather than active
makes the environment more similar to an actor whose behavior is triggered by
the messages it receives, that are all served indistinctly.

Most of the research in multiagent systems typically focuses on the abstrac-
tion of agent only, completely abstracting away from the notion of environment.
Proposals like [23, 48] overcome this limit by introducing first-class abstractions
for the environment, to be captured alongside agents themselves. In particular,
[48] states that “the environment is a first-class abstraction that provides the
surrounding conditions for agents to exist and that mediates both the interaction
among agents and the access to resources.” This proposal brought to important
evolutions like the A&A meta-model [36] and its implementation CArtAgO [38].

Since in the agent paradigm each agent is an independent locus of control,
coordination means become essential towards regulating the overall behavior of
the system. As it is well underlined in [29], the agent-based model allows to
naturally tackle the issue of coordination by introducing the concepts of inter-
action protocol [18], and that of norm [26, 46]. These concepts are at the heart
of the design of multiagent systems. The deliberative cycle of agents is affected
by the norms and by the obligations these norms generate as a consequence of
the agents’ actions. Each agents is free to adapt its behavior to (local or coor-
dination) changing conditions, e.g., by re-ranking its goals based on the context
or by adopting new goals.

Institutions and organizations set the ground for coordination and coopera-
tion among agents. Intuitively, an institution is an organizational structure for
coordinating the activities of multiple interacting agents, that typically embod-
ies some rules (norms) that govern participation and interaction. In general, an
organization adds to this societal dimension a set of organizational goals, and
powers to create institutional facts or to modify the norms and obligations of the
normative system [8]. Agents, playing one or more roles, must accomplish the
organizational goals respecting the norms. Institutions and organizations are,
thus, a way to realize functional decomposition in an agent setting.

5 The Rise of the Action Force

Actions are the capabilities agents have to modify their environment. The pro-
cess force is mapped onto a cycle in which the agent observes the world (updating
its beliefs), deliberates which intentions to achieve, plans how to achieve them,
and finally executes the plan [12]. Beliefs and intentions are those components of
the process abstraction that create a bridge respectively towards the object/data

5 Summarizing, objects “do it” for free because they are data, agents are processes
and “do it” because it is functional to their objectives.

29

force (i.e., the environment) and the action force. Beliefs concern the environ-
ment. Intentions lead to action [49], meaning that if an agent has an intention,
then the expectation is that it will make a reasonable attempt to achieve it. In
this sense, intentions play a central role in the selectin and the execution of ac-
tion. Consequently, instead of being subordinate to the process force the action
force is put in relation to it by means of intentions. This is a difference with
respect to functional decomposition, where actions are produced by refining a
given goal through a top-down strategy.

A fundamental step towards raising the value of the action force is brought by
normative multiagent systems [30, 9], which take inspiration from mechanisms
that are typical of human communities, and have been widely studied in the
research area on multiagent systems. According to [9] a normative multiagent
system is: “a multiagent system together with normative systems in which agents
on the one hand can decide whether to follow the explicitly represented norms,
and on the other the normative systems specify how and in which extent the
agents can modify the norms”. Initially the focus was posed mainly on regula-
tive norms that, through obligations, permissions, and prohibitions, specify the
patterns of actions and interactions agents should adhere to, even though de-
viations can still occur and have to be properly considered [30]. More recently,
regulative norms have been combined with constitutive norms [8, 17, 21], which
support the creation of institutional realities by defining institutional actions
that make sense only within the institutions they belong to. A typical exam-
ple is that of “raising a hand”, which counts as “make a bid” in the context
of an auction. Institutional actions allow agents to operate within an institu-
tion. Citing [21], the impact on the agent’s deliberative cycle is that agents can
“reason about the social consequences of their actions”. In this light, going back
to Meyer’s forces, if agents are abstractions for processes and environments for
objects, then norms are abstractions of the action force (see Figure 2) because
norms model actions and, thus, condition the way in which processes operate on
objects. In fact, norms specify either institutional actions, or the conditions for
the use of such actions, consequently regulating the acceptable behavior of the
agents in a system. This view is also supported by the fact that norms concern
“doing the right thing” rather than “doing what leads to a goal” [46].

6 Data and Norm Awareness

The difficulty of engineering multiagent systems lies in the fact that the envi-
ronment includes a process but such process is typically not represented in a
way that can be reasoned about. Not only the environment should be given in
terms of a data information model, specifying the structure of the information,
and a data lifecycle, specifying data state transitions, (data awareness) but the
two should be explicitly represented and accessible to the agents in their delib-
erative cycle. To this aim, such an explicit representation should constitute a
body of norms, which describe how data evolution is governed, allowing agents
to reason about the consequences of their actions and to have expectations about

30

ob
jec

t/
da

ta
action/instruction

p
ro

c
e
ss/

th
re

a
d

data
operation

subroutine
data

lifecycle

n
o
r
m

agent

en
v
ir
o
n
m
en

t

intention
goal

belief

commitment

obligation

institution
artifact

interaction

Fig. 2. Rereading Meyer’s forces.

31

the evolution of the environment (norm awareness). Only a holistic, data- and
norm-aware view would allow agents to reason and to have expectations on the
evolution of the whole system, autonomously deciding the course of actions to
apply.

Such a holistic solution where constitutive norms are used to specify both
agent actions and data operations, and where regulative norms are used to cre-
ate expectations on the overall evolution of the system (agents behavior and
environment evolution) is, however, still missing. Object-Orientation associates
operations to data; the set of executable operations can sometimes change along
time depending on an object’s lifecycle, but the paradigm did not push the study
towards a normative representation. Similarly, while business artifacts provide
both a rich description of their data and their lifecycle, they do not provide any
link to a corresponding normative understanding, thus making impossible for the
agents to leverage this knowledge for reasoning about how to act. Artifacts in
the A&A model are radically different from the business artifacts because they
do not come with an explicit information model for data, and they do not ex-
pose their lifecycle. Consequently, this lifecycle information cannot be exploited
at design time, nor at runtime to reason about which actions should be taken
towards the achievement of the agent goals.

A data- and norm-aware perspective would also bring advantages from a soft-
ware engineering perspective, mainly residing in an increased decoupling among
the agent system components, in a way that resembles what happens with busi-
ness artifacts [20]. This is due to the fact that, at design time, norms would
provide a programming interface between agents and their environment, given
in terms of those state changes that are relevant in the environment.

6.1 A data-centric Approach to Interaction

A first step in the direction of having data and norm awareness is provided by the
JaCaMo+ platform [3], which allows Jason agents [11] to engage commitment-
based interactions [42], in turn reified as CArtAgO [37] artifacts. JaCaMo+
artifacts implement the social state of the interaction and provide the roles that
are then enacted by the agents. The explicit representation of the social state
enables the realization of a data-aware approach, where the data are the events
occurring in the social state, while commitments provide the information nec-
essary to agents in their interaction. Both agents and artifacts, encoding social
states, are first-class elements in the design of the multiagent system. A commit-
ment C(x, y, s, u) captures that agent x (debtor) commits to agent y (creditor)
to bring about the consequent condition u when the antecedent condition s
holds. Antecedent and consequent conditions are conjunctions or disjunctions
of events and commitments. Besides having an information model commitments
have a lifecycle [45] that can be captured by a set of norms [22]. A commit-
ment is null right before being created; active when it is created. Active has
substates: conditional (as long as the antecedent condition did not occur), and
detached (when the antecedent condition occurred, the debtor is engaged in the
consequent condition of the commitment). An active commitment can become:

32

pending if suspended; satisfied, if the engagement is accomplished; expired, if
it will not be necessary to accomplish the consequent condition; terminated if
the commitment is canceled when conditional or released when active; and fi-
nally, violated when its antecedent has been satisfied, but its consequent will
be forever false, or it is canceled when detached (the debtor will be considered
liable for the violation). Commitments in JaCaMo+ belong to the social state
and are shared by the interacting agents as resources. So, they are information,
that is created and evolves along the interaction with event occurrence, and that
contributes to the specification of the environment in which the agents operate.
In this light, the social state can be seen as a special kind of business artifact
in the sense of [7, 20, 15]. JaCaMo+ allows specifying agent programs as Jason
plans, whose triggering events amount to the change of the state of some com-
mitment [2]. Suppose, to make an example, that the commitment goes to the
state “detached” and that this event triggers a plan in the agent which is the
debtor of that commitment: the connection between the commitment and the
associated plan is not only causal (event triggers plan), but rather the plan is
explicitly attached to the commitment, in the sense that its aim is to satisfy the
consequent condition of the commitment (norm-awareness).

While the representation of commitments in the JaCaMo+ platform is pro-
positional, the Cupid language [19] provides a more sophisticate and informa-
tion-centric representation that distinguishes between a schema (what occurs
in a specification) and its instances (what transpires and is represented in a
database), reserving the term commitment only for schemas. This avoids the
inadequacy of first-order in representing commitment instances by relying on
relational database queries. The advantages, brought to the analysis of proper-
ties, of a data-aware approach are proved in DACMAS [34], which incorporates
commitment-based MASs but in a data-aware context. In general, in presence
of data transition systems become typically infinite-state [15]. On the one hand,
this is due to the fact that there is no bound on the number of tuples that can
be added to database relations as the computation goes on. On the other hand,
even when the number of tuples does not exceed a certain threshold, it is possi-
ble to populate them using infinitely many different data objects. Interestingly,
when a DACMAS is state-bounded, i.e., the number of data that are simultane-
ously present at each moment in time is bounded, verification of rich temporal
properties becomes decidable. Notably, this shows that, by suitably controlling
how data are evolved in the system, it is possible to make agents data-aware
without compromising their reasoning capabilities [6, 34].

7 Conclusion

Section 2 introduced properties that characterize quality software. Let us see
how the rereading of Meyer’s forces, that is depicted in Figure 2, impacts on the
desired qualities of software. Robustness is the ability to react appropriately to
abnormal conditions. The view of the action force as captured by norms allows
agents to reason on the lifecycle of data in the environment, thus adding to the

33

already available capability of reasoning about deviations from agent’s expected
behavior, an enhanced capability of reasoning about abnormal conditions in the
environment and decide how to react to them. So, in principle, the robustness
of the system should be increased. The fact that data structure and lifecycles
are explicitly represented in a way that can be reasoned about makes agents and
their environment more decoupled, avoiding the need of customizing agent pro-
grams depending on the environment. This, in turn, increases both extendibility
and reusability of all the components of the MAS. Last but not the least, data-
awareness joint with a norm-based representation both enables a fully fledged
range of verifications and helps modularizing the verification of properties inside
a MAS, thus enhancing the correctness quality. In particular, if norms allow
both for the specification of the environment and for the specification of action,
it becomes possible to perform the analysis of properties at the level of norms
rather than on the system as a whole. For instance, given a coordination artifact,
it will be possible to verify deadlock freedom on the norms that it encodes and
that represent it. The outcome will hold for any instance of the artifact that
will be created. Of course, for each use it will be necessary to check that the
usage of the artifact, done by a specific agent, conforms to the specification but
this is a much simpler kind of verification [4]. A language for representing norms
that guarantees a priori the decidability of property analysis would be a great
advancement being the tool that agents need to reason and decide which action
to take, thus leveraging their autonomy. JaCaMo [10], simpAL [39], JaCaMo+
[2] are existing platforms for the development of MAS that have the right po-
tential for developing the view depicted in Figure 2. The next step would be the
introduction of information-centric artifacts, whose lifecycle and data evolution
are realized by way of query languages that, as for DACMAS [34], guarantee de-
cidability when certain constraints are met. For commitment-based platforms,
the Cupid [19] language would provide analogous features.

Concerning agent-based design, many proposals are found in the literature
on Agent-Oriented Software Engineering, where agents are used as high-level
software components that are characterized by autonomy and high-level com-
munication, that is based on speech acts. Briefly, SODA [33] is an agent-oriented
methodology for the analysis and design of agent-based systems, adopting a lay-
ering principle and a tabular representation. It focuses on inter-agent issues, like
the engineering of societies and environment for MAS, and relies on a meta-
model that includes both agents and artifacts. GAIA [50] is a methodology
for developing a MAS as an organization. Tropos [13] is a requirements-driven
methodology for developing multiagent systems. The 2CL Methodology [5] is an
extension of [24]. It supports the design of commitment-based business protocols
that include temporal constraints, and allows the verification of properties. New
methodologies, however, are needed to tackle the norm-oriented and data-aware
vision that we have illustrated. CoSE [2] is a commitment-driven methodology
for programming agents.

Finally, [39] explores agent-oriented programming as a general purpose pro-
gramming paradigm. It compares agent-based programming to actor-based pro-

34

gramming from a qualitative perspective, to explain the maturation process that
lead to the development of the simpAL programming language. The simpAL lan-
guages is grounded on the concepts of agent, artifact, and workspace. A simpAL
program is an organization where agents play roles. A static typing mechanism
is provided to enact compile-time verifications concerning the implementation
and interaction of agents and artifacts. [16] compares Jason, as a representative
of agent programming language, against Erlang and Scala, that are two actor-
oriented programming languages, in a communication benchmark, in order to
verify if actor languages have better performances. The reported quantitative
results (which concern time, memory and core usage), show that despite the fact
that agent programming languages require a significant overhead when used to
develop complex agents, Jason has reasonable performance.

Acknowledgements. The authors would like to thank the anonymous review-
ers for the helpful comments. This work was developed during the sabbatical
year that Matteo Baldoni and Cristina Baroglio spent at the Free University
of Bolzano-Bozen. It was partially supported by the Accountable Trustworthy
Organizations and Systems (AThOS) project, funded by Università degli Studi
di Torino and Compagnia di San Paolo (CSP 2014).

References

1. Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services.
Springer, 2004.

2. Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio.
Empowering agent coordination with social engagement. In Marco Gavanelli,
Evelina Lamma, and Fabrizio Riguzzi, editors, AI*IA 2015, Advances in Artifi-
cial Intelligence - XIVth International Conference of the Italian Association for
Artificial Intelligence, Ferrara, Italy, September 23-25, 2015, Proceedings, volume
9336 of Lecture Notes in Computer Science, pages 89–101. Springer, 2015.

3. Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Mical-
izio. Leveraging Commitments and Goals in Agent Interaction. In D. Ancona,
M. Maratea, and V. Mascardi, editors, Proc. of XXX Italian Conference on Com-
putational Logic, CILC, 2015.

4. Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, Nirmit Desai, Viviana Patti,
and Munindar P. Singh. Choice, Interoperability, and Conformance in Interac-
tion Protocols and Service Choreographies. In K. Decker, J. Sichman, C. Sierra,
and C. Castelfranchi, editors, Proceedings of the 8th International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2009, pages 843–850, Bu-
dapest, Hungary, May 2009. IFAAMAS.

5. Matteo Baldoni, Cristina Baroglio, Elisa Marengo, Viviana Patti, and Federico
Capuzzimati. Engineering commitment-based business protocols with the 2CL
methodology. JAAMAS, 28(4):519–557, 2014.

6. Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi. A computationally-
grounded semantics for artifact-centric systems and abstraction results. In Toby
Walsh, editor, IJCAI 2011, Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages
738–743. IJCAI/AAAI, 2011.

35

7. Kamal Bhattacharya, Nathan S. Caswell, Santhosh Kumaran, Anil Nigam, and
Frederick Y. Wu. Artifact-centered operational modeling: Lessons from customer
engagements. IBM Systems Journal, 46(4):703–721, 2007.

8. Guido Boella and Leendert W. N. van der Torre. Regulative and constitutive
norms in normative multiagent systems. In Didier Dubois, Christopher A. Welty,
and Mary-Anne Williams, editors, Principles of Knowledge Representation and
Reasoning: Proceedings of the Ninth International Conference (KR2004), Whistler,
Canada, June 2-5, 2004, pages 255–266. AAAI Press, 2004.

9. Guido Boella, Leendert W. N. van der Torre, and Harko Verhagen. Introduction
to normative multiagent systems. In Guido Boella, Leendert W. N. van der Torre,
and Harko Verhagen, editors, Normative Multi-agent Systems, 18.03. - 23.03.2007,
volume 07122 of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

10. Olivier Boissier, Rafael H. Bordini, Jomi F. Hübner, Alessandro Ricci, and Andrea
Santi. Multi-agent oriented programming with JaCaMo. Science of Computer
Programming, 78(6):747 – 761, 2013.

11. Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming
Multi-Agent Systems in AgentSpeak Using Jason. John Wiley & Sons, 2007.

12. Michael E. Bratman. What is intention? In P. Cohen, J. Morgan, and M. Pollack,
editors, Intensions in Communication, pages 15–31. MIT Press, Cambridge, MA,
1990.

13. Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John My-
lopoulos. Tropos: An agent-oriented software development methodology. Au-
tonomous Agents and Multi-Agent Systems, 8(3):203–236, 2004.

14. David M. Bridgeland and Ron Zahavi. Business Modeling: A Practical Guide to
Realizing Business Value. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008.

15. Diego Calvanese, Giuseppe De Giacomo, and Marco Montali. Foundations of data-
aware process analysis: a database theory perspective. In Richard Hull and Wenfei
Fan, editors, Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, PODS 2013, New York, NY, USA - June
22 - 27, 2013, pages 1–12. ACM, 2013.

16. Rafael C. Cardoso, Jomi Fred Hübner, and Rafael H. Bordini. Benchmarking com-
munication in actor- and agent-based languages. In Massimo Cossentino, Amal El
Fallah-Seghrouchni, and Michael Winikoff, editors, Engineering Multi-Agent Sys-
tems - First International Workshop, EMAS 2013, St. Paul, MN, USA, May 6-7,
2013, Revised Selected Papers, volume 8245 of Lecture Notes in Computer Science,
pages 58–77. Springer, 2013.

17. Amit K. Chopra and Munindar P. Singh. Constitutive interoperability. In Pro-
ceedings of the 7th Int. J. Conf. on Autonomous agents and multiagent systems,
Volume 2, pages 797–804. International Foundation for Autonomous Agents and
Multiagent Systems, 2008.

18. Amit K. Chopra and Munindar P. Singh. Agent communication. In Gerhard Weiss,
editor, Multiagent Systems, 2nd edition. MIT Press, 2013.

19. Amit K. Chopra and Munindar P. Singh. Cupid: Commitments in relational al-
gebra. In Blai Bonet and Sven Koenig, editors, Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA., pages 2052–2059. AAAI Press, 2015.

20. David Cohn and Hull Richard. Business Artifacts: A Data-centric Approach to
Modeling Business Operations and Processes. IEEE Data Eng. Bull., 32(3):3–9,
2009.

36

21. Natalia Criado, Estefania Argente, Pablo Noriega, and Vicent Botti. Reasoning
about constitutive norms in bdi agents. Logic Journal of IGPL, 2013.

22. Mehdi Dastani, Leendert van der Torre, and Neil Yorke-Smith. Commitments and
interaction norms in organisations. J. Autonomous Agents and Multiagent Systems,
pages 1–43, 2015.

23. Yves Demazeau. From interactions to collective behaviour in agent-based systems.
In Proceedings of the 1st. European Conference on Cognitive Science, pages 117–
132, Saint-Malo, 1995.

24. Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. Amoeba: A methodology
for modeling and evolving cross-organizational business processes. ACM Trans.
Softw. Eng. Methodol., 19(2), 2009.

25. Antonio Di Leva and Salvatore Femiano. The bp-m* methodology for process
analysis in the health sector. Intelligent Information Management, 3(2):56–63,
2011.

26. Jack P. Gibbs. Norms: The problem of definition and classification. American
Journal of Sociology, 70(5):586––594, 1965.

27. Guido Governatori. Law, logic and business processes. In Third International
Workshop on Requirements Engineering and Law, RELAW 2010, Sydney, NSW,
Australia, September 28, 2010, pages 1–10. IEEE, 2010.

28. Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular ACTOR
formalism for artificial intelligence. In Nils J. Nilsson, editor, Proceedings of the 3rd
International Joint Conference on Artificial Intelligence. Standford, CA, August
1973, pages 235–245. William Kaufmann, 1973.

29. Nicholas R. Jennings. On agent-based software engineering. Artificial Intelligence,
117(2):277–296, 2000.

30. Andrew J.I. Jones and José Carmo. Deontic logic and contrary-to-duties. In Dov
Gabbay, editor, Handbook of Philosophical Logic, page 203–279. Kluwer, 2001.

31. Bertrand Meyer. Object-oriented Software Construction (2Nd Ed.). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1997.

32. John C. Mitchell. Concepts in programming languages. Cambridge University
Press, Cambridge, New York (N. Y.), 2002.

33. Ambra Molesini, Andrea Omicini, Enrico Denti, and Alessandro Ricci. SODA: A
roadmap to artefacts. In Engineering Societies in the Agents World VI, volume
3963 of LNAI, pages 49–62. Springer, 2006. 6th Int. Workshop (ESAW 2005).

34. Marco Montali, Diego Calvanese, and Giuseppe De Giacomo. Verification of data-
aware commitment-based multiagent system. In Ana L. C. Bazzan, Michael N.
Huhns, Alessio Lomuscio, and Paul Scerri, editors, International conference on
Autonomous Agents and Multi-Agent Systems, AAMAS ’14, Paris, France, May
5-9, 2014, pages 157–164. IFAAMAS/ACM, 2014.

35. Rumyana Neykova and Nobuko Yoshida. Multiparty Session Actors. In eva Kühn
and Rosario Pugliese, editors, Coordination Models and Languages - 16th IFIP WG
6.1 International Conference, COORDINATION 2014, Held as Part of the 9th In-
ternational Federated Conferences on Distributed Computing Techniques, DisCoTec
2014, Berlin, Germany, June 3-5, 2014, Proceedings, volume 8459 of Lecture Notes
in Computer Science, pages 131–146. Springer, 2014.

36. Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the A&A meta-
model for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
17(3):432–456, December 2008. Special Issue on Foundations, Advanced Topics
and Industrial Perspectives of Multi-Agent Systems.

37. Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the A&A meta-
model for multi-agent systems. JAAMAS, 17(3):432–456, 2008.

37

38. Alessandro Ricci, Michele Piunti, and Mirko Viroli. Environment programming
in multi-agent systems: an artifact-based perspective. Autonomous Agents and
Multi-Agent Systems, 23(2):158–192, 2011.

39. Alessandro Ricci and Andrea Santi. From Actors and Concurrent Objects to
Agent-Oriented Programming in simpAL. In Gul A. Agha, Atsushi Igarashi, Naoki
Kobayashi, Hidehiko Masuhara, Satoshi Matsuoka, Etsuya Shibayama, and Ken-
jiro Taura, editors, Concurrent Objects and Beyond - Papers dedicated to Akinori
Yonezawa on the Occasion of His 65th Birthday, volume 8665 of Lecture Notes in
Computer Science, pages 408–445. Springer, 2014.

40. Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2 edition, 2003.

41. Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92,
March 1993.

42. Munindar P. Singh. An ontology for commitments in multiagent systems. Artif.
Intell. Law, 7(1):97–113, 1999.

43. Munindar P. Singh and Michael N. Huhns. Service-oriented computing - semantics,
processes, agents. Wiley, 2005.

44. Samira Tasharofi, Peter Dinges, and Ralph E. Johnson. Why Do Scala Developers
Mix the Actor Model with Other Concurrency Models? In Proceedings of the 27th
European Conference on Object-Oriented Programming, ECOOP’13, pages 302–
326, Berlin, Heidelberg, 2013. Springer-Verlag.

45. Pankaj R. Telang, Munindar P. Singh, and Neil Yorke-Smith. Relating Goal and
Commitment Semantics. In Post-proc. of ProMAS, volume 7217 of LNCS. Springer,
2011.

46. Göran Therborn. Back to norms! on the scope and dynamics of norms and nor-
mative action. Current Sociology, 50:863–880, 2002.

47. Mathias Weske. Business Process Management: Concepts, Languages, Architec-
tures. Springer, 2007.

48. Danny Weyns, Andrea Omicini, and James Odell. Environment as a first class
abstraction in multiagent systems. JAAMAS, 14(1):5–30, 2007.

49. Michael J. Wooldridge. Introduction to multiagent systems, 2nd edition. Wiley,
2009.

50. Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Developing
multiagent systems: The Gaia methodology. ACM Trans. Softw. Eng. Methodol.,
12(3):317–370, 2003.

38

Agent-Oriented Methodology for Designing Cognitive
Agents for Serious Games

Cheah Wai Shiang1,*, John-Jules Meyer*, Kuldar Taveter2,#

1Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak,

Kota Samarahan, Malaysia
c.waishiang@gmail.com

*Department of Informatics, Universiteit Utrecht, Utrecht, The Netherlands
J.J.C.Meyer@uu.nl

2Department of Informatics, Tallinn University of Technology, Tallinn, Estonia
#Department of Electrical Engineering, University of Shanghai for Science and Technology,

P.R. China
kuldar.taveter@ttu.ee

Abstract. One of the challenges in the development of serious games is
designing believable virtual characters. Although statistical and machine-learning
techniques have been introduced to emulate believable virtual characters in
serious games, such techniques are computationally expensive. Alternatively,
cognitive architectures like ACT-R have been proposed in robotics for achieving
human-like robots. The same approach can be adapted for designing cognitive
agents for serious games. However, there is neither methodology nor systematic
process available for designing of a cognitive architecture for software agents to
be used in serious games. As a result, it is hard to model, design and develop
cognitive agents. Also, it is hard to transfer a cognitive design of a believable
virtual character to other similar kinds of projects. Prompted by these needs, we
propose to combine the AOM and Prometheus methodologies to fill this gap. We
demonstrate how the combination of AOM and Prometheus is used to model a
multi-agent BDI cognitive architecture at the abstraction layers of conceptual
domain modelling and platform-independent design and how the resulting tuned
cognitive architecture can be implemented in OOAPL – an object-oriented
language for programming BDI agents. With the proposed methodology, we can
track and trace cognitive processing within a virtual character. Also, we can reuse
and adapt agent models to different scenarios or case studies.

Keywords: Cognitive architecture, cognitive modelling, agent-oriented software
engineering, methodology, BDI

39

1 Introduction

Serious games are designed for purposes beyond pure entertainment. The
objective of serious games is to facilitate training and public awareness by using
games to address serious matters, such as cybersecurity, homeland safety, and
crisis management. Serious gaming allows the users to experience situations that
are impossible to create in the real world due to cost, safety, time, and complexity
[3]. It has been indicated that the challenges of serious games are to emulate or
simulate virtual characters or non-player characters (NPC) that behave in the way
human beings act in the real world, interact socially with one another, and
compete or cooperate to solve problems [11]. Accordingly, the general research
question addressed by this article is how to create believable autonomous
cognitive characters?
 According to Desai and Szafron [4], believable characters are characterized by
human-like features such as the capabilities to learn, to pause between decisions,
to make mistakes, and to adjust their strategies in response to their opponents’
actions. Work has been done to introduce various AI techniques to mimic
believable characters. Resulting from this work, game characters imitate and
understand the behaviour of a player and interact with the player through different
learning algorithms like statistical analysis, machine learning, and learning
algorithms based on neural network reinforcement [4].
 Statistical methods and machine learning algorithms are computationally
expensive [5]. Alternatively, cognitive architectures have been proposed to model
and control believable software agents or robots [7, 13, 14, 16, 17]. Cognitive
architecture can be defined as the “refinement of the notions of behaviour and
behaviour models, and the development of cognitive insertion machines for
manipulating of behavioural models of different levels of abstraction” [14]. A
well-known cognitive architecture that has been successfully used for simulating
believable virtual characters is “Adaptive Control of Thought-Rational” (ACT-R)
[16]. The ACT-R architecture consists of a number of modules, each of which is
devoted to processing a particular kind of information [16]. The goal module
maintains information relevant to the goals of the agent and the declarative
module is responsible for encoding, storing, and retrieving of the knowledge by
the agent. The vision, audio, speech and motor modules serve as sensors and
actuators for the agent. Finally, the procedural module is responsible for
coordination between the modules, which is done in sequence [16, 22].
 Different serious games require virtual characters with different cognitive
capabilities. To cater for this need, a methodology is required for designing virtual
characters as software agents in serious games. This kind of methodology would
facilitate modelling, designing and developing of tailor-made cognitive agents.
Also, such methodology would support transferring the existing cognitive
architectures to other, similar kinds of projects.
 To fill the gap in designing autonomous and believable cognitive agents for
serious games, we propose to use the combination of Agent Oriented Modelling

40

(AOM) [10] and Prometheus [9] agent-oriented software engineering
methodologies. AOM is an agent-oriented software engineering methodology that
was introduced to designing complex socio-technical systems of the “human-agent
collectives” type [24]. Although AOM has been used for requirements engineering
for agent-based serious games [25], the full potential of AOM in designing serious
games has not yet been explored. This leads us to the refined research question:
how can the combination of AOM and Prometheus methodologies be used to
design believable virtual characters for serious games?
 Answering the research question of this paper has been inspired by the multi-
agent cognitive architecture proposed for robots in [22]. In the cognitive
architecture [22], the “brain” of a robot is modelled and designed as a collection of
agents, each of which is responsible for a particular functional area, such as
collecting or emitting signals and performing reactive tasks at a lower level, signal
processing and performing semi-autonomous tasks at the middle level, and
performing cognitive and social tasks at a higher level. Each constituent agent of
the cognitive robot architecture proposed in [22] has the PDE (Perception-
Deliberation-Execution) architecture and incorporates memory capacity to be able
to maintain its internal state. No agent has complete control of the robot.
Therefore different agents making up the cognitive architecture of a robot have to
combine their objectives.
 In this article, we propose similar to [22] cognitive architecture for software
agents, where the architecture is made up by agents, each of which has the Belief-
Desire-Intention (BDI) agent architecture [26] and is responsible for a different
functional area, such as perceiving, holding memory, self-identification, situation
assessment, planning, and performing actions. The resulting multi-agent BDI
cognitive architecture thus consists of a collection of BDI agents that collaborate
to perform cognitive processing. To design different multi-agent BDI
architectures, the combination of AOM and Prometheus agent-oriented software
engineering methodologies is applied. We also demonstrate in this article how a
cognitive multi-agent BDI architecture achieved by applying the combination of
the AOM and Prometheus methodologies can be implemented by using OOAPL
[21] – an object oriented BDI agent programming language.
 This article is structured as follows. The motivational case study is introduced in
Section 2. It presents two scenarios of fore extinguishing together with the
cognitive multi-agent BDI architecture of the virtual characters of these scenarios.
Section 3 outlines the details of the combination of the AOM and Prometheus
agent-oriented software engineering methodologies for designing believable
virtual characters with the multi-agent BDI architectures. The proposed
combination of methodologies covers understanding the problem domain for
which virtual characters are to be designed by conceptual domain modelling and
designing the multi-agent BDI architecture for characters of the given problem
domain by platform-independent design. Section 5 addresses the implementation
of the agent models created in Section 4 in an object-oriented agent programming
language. Section 6 presents a review on other approached of designing cognitive

41

agents for serious games. That section also reports on the works performed on the
integration of BDI agents into game engines. Finally, the conclusions and
perspectives for future work are presented in Section 7.

2 Motivational case study

In this section, a motivational case study on cognitive agents participating in a
scenario of fire extinguishing is presented. The scenario is elaborated into two
variant scenarios of fire extinguishing. The fire extinguishing occurs in a grid
network with two rooms, an open space, and two virtual agents. The elaborated
scenarios will be used in Section 4 to validate the combined methodology for
designing multi-agent BDI cognitive architectures proposed in this article. The
two scenarios are described as follows:

Scenario 1: virtualAgent1 is in the building and virtualAgent2 is in the open
space. VirtualAgent1 has no fire extinguishing experience, while virtualAgent2 is
well trained to extinguish small fires. Suddenly a fire bursts out in the open space.
When the fire is starts, virtualAgent1 located in a closed space is unaware of the
fire and continues with her work. VirtualAgent2 being located in the open space
will take actions. His first action is to find a fire extinguisher. After that he will
take the extinguisher, locate the fire, move towards the fire, and extinguish the
fire.

Scenario 2: virtualAgent1 is aware of the fire in the room and cries for help.
VirtualAgent2 responses by moving in the direction of the cry for help. He grabs
the fire extinguisher and asks virtualAgent1 for the location of the fire. He
receives her reply on the location of the fire and moves towards it and
extinguishes the fire.

Let us now assume that both virtual agents have been designed according to the
multi-agent cognitive architecture. Adopted from cognitive multi-agent
architectures in robotics [22, 23], the cognitive architecture of a virtual agent is
presented in Figure 1. In this architecture, each agent serves to fulfil some kinds of
requirements for cognitive agents, such as situation awareness, planning,
reasoning, and learning, as has been stated in [7, 13, 14, 16, 29]. It is up to the
agent designer to design each given agent as a normative agent, learning agent,
and so on, according to the requirements. The cognitive multi-agent BDI
architecture depicted in Figure 1 consists of six agents that have been designed to
support the cognitive processing of a believable virtual character. Each agent is
assigned with an identifier for ease of recognition. The constituent agents of the
architecture shown in Figure 1 are plannerAgent (ID1), actionAgent (ID6),
memoryAgent (ID2), situationAssessmentAgent (ID3), perceptionAgent (ID4),

42

and selfIdentificationAgent (ID4). The plannerAgent (ID1) has the responsibility
to plan reactions to incoming perceptions. The situationAssessmentAgent (ID3)
has the responsibility to monitor and evaluate the situation surrounding the virtual
agent. The perceptionAgent (ID4) has the responsibility to handle incoming
perceptions from the environment. The selfIdentificationAgent (ID5) has been
designed to maintain the personality of the virtual agent. The memoryAgent (ID2)
has the responsibility to manage the appearance and changes of objects in the 3D
environment in which the agent is embedded. The actionAgent (ID6) is
responsible for managing actions requested by others agents.
 The advantage of such multi-agent cognitive architecture is having autonomous
constituent agents that control different parts of the agent and cooperate to achieve
certain objectives. In addition, the multi-agent cognitive architecture is able to
produce scalable, fault-tolerant and flexible behaviours while maintaining the
requirements for reusability, parallelism, robustness, and modularity [23].

Figure 1. Concrete multi-agent BDI cognitive architecture for a virtual character

3 Methodology for designing cognitive agents

AOM is a comprehensive agent-oriented software engineering methodology that is
centred on the viewpoint framework [10]. The framework introduces horizontal
abstraction layers and vertical perspectives that are required to focus on when
people are involved in engineering open distributed systems. The viewpoint
framework has been designed with a reduced number of aspects, as compared, for
example, to the Zachman framework [11], to allow people to grasp the aspects
more easily. In addition, the viewpoint framework is compliant with the model-
driven architecture (MDA) [10]. In AOM this means that the agent models of one
abstraction layer can be transformed into the corresponding models at another
abstraction layer of AOM.

43

 When designing and implementing a socio-technical system, one is involved in
performing a sequence of modelling activities. In brief, the modelling process of
AOM covers the abstraction layers of conceptual domain modelling, platform-
independent design, and platform-specific design and implementation. The layer
of conceptual domain modelling constitutes a high-level motivation layer of the
system. It provides a description at the level that allows non-technical stakeholders
of any given problem domain to elicit, represent, understand, and discuss the
requirements for the system to be designed. The highest layer is not dedicated to
any technology to be used for designing the system. The layer of platform-
independent design corresponds to the designer view of the system in which the
design of the system is decided and represented. However, the design descriptions
presented at this layer are not related to any particular implementation platform or
language. The design layer instead provides a description that can be turned into a
particular implementation at the next layer – the layer of platform-specific design
and implementation. The design description at that layer allows the system to be
deployed and executed in a particular environment like specific platform,
hardware, technology, and architecture.
 In more detail, the modelling process at the layer of conceptual domain
modelling involves modelling the goals, roles, interactions and domain knowledge.
This is followed by deciding agent types, knowledge by agents, interactions
between agents and agent behaviours at the layer of platform-independent design.
Finally, platform-specific models are created at the layer of platform-specific
design and implementation. The modelling process is shown in Figure 2. In
addition, each model can be transformed into another model by following the
direction of “derives” from arrows depicted in Figure 2. The transformation
guidelines are introduced in [10].

Figure 2. Extension of the AOM methodology by Prometheus for cognitive agents

44

Figure 2 shows an extension of the stage VIII of the modelling process of AOM
by the models from the Prometheus methodology. The extension is needed to cater
for concrete design of the multi-agent BDI cognitive architecture as described in
section 2. Since AOM addresses abstract agent architecture instead of the BDI
architecture, the integration of AOM with Prometheus [9] was required for the
research work that is being reported by this article. We therefore claim here like it
has been claimed in the article [12] that while AOM supports well requirements’
elicitation and analysis of cognitive processing, Prometheus efficiently supports
initial design of cognitive agents. Hence, a comprehensive combined methodology
is introduced for designing cognitive agents.
 In the cognitive processing modelling depicted in Figure 2, we first model
details of a scenario in the case study. Thereafter we represent the cognitive
processing overview model and cognitive memory-message agent model for the
given scenario. Finally, the cognitive internal interaction model and cognitive
knowledge model are formed to model the details of the cognitive configuration in
relation to the given scenario. Cognitive processing modelling is an iterative
process until the design goals are satisfied. The details of the models created in the
course of the cognitive processing modelling are the following ones:
Cognitive processing overview model (COP-model): Prometheus system
overview model is adopted for this purpose to present an overview of the multi-
agent BDI cognitive architecture. This model represents the agent types,
interaction protocols, perceptions and actions involved in the cognitive processing.
Cognitive memory-message agent model (CMM-model): Prometheus agent
overview model is adopted to present the overall message flow and the memory
utilization strategy for the given agent during cognitive processing. Cognitive
agent communication model (CAC-model): AOM interaction diagram is
adopted to present the interactions between the agents involved in the cognitive
processing. Cognitive agent knowledge model (CAK-model): AOM behaviour
model is adopted to present the agent’s beliefs and intentions during the cognitive
processing.
 A methodology for modelling and designing cognitive agent for serious games
has been presented in this section. In order to validate and elaborate the
methodology, a walkthrough example of the motivational case study is described
in Section 4.

4 Designing the architecture for virtual characters in the fire
extinguishing scenario

According to the methodology proposed in Section 3, modelling activities start by
conceptual domain modelling. In the conceptual domain modelling, the problem
domain at hand is analysed and requirements are elicited and represented for the
system to be designed. One of the main types of models created at the stage of
conceptual domain modelling is goal model.

45

Untrained employee Trained employee

Handle fire

Cry for helpPut down the fire

Figure 3. The overall goal model for the scenario of fire extinguishing

 Figure 3 presents the overall goal model for the scenario of fire extinguishing. A
goal model contains the following components: functional goals, quality goals,
and roles. A functional goal represents a functional requirement for the system to
be designed. A functional goal can be decomposed into sub-goals, each of which
represents a specific aspect of achieving their “parent” goal. Quality goals
attached to functional goals represent non-functional requirements. A quality goal
sets a specific standard to be targeted when achieving the corresponding
functional goal, such as ensuring the customer’s satisfaction. Roles attached to
functional goals describe the capacities or positions required for achieving the
corresponding functional goals. As is illustrated by Figure 3, the main goal of the
scenario of fire extinguishing is to “Handle fire”. According to our scenario,
achieving of this goal involves two roles: Trained Employee and Untrained
Employee, both of which are subtypes of the role Employee. The main goal has
been elaborated into the two sub-goals: “Extinguish the fire” and “Cry for help”.
For achieving the main goal along with its two sub-goals, the role Untrained
Employee is dependent on the role Trained Employee. Hence, the AOM
organization model of the scenario of fire extinguishing depicted in Figure 4
represents a dependency between the roles Untrained Employee and Trained
Employee. In general, the organization model of AOM indicates the relationships
between the roles attached to the goal model.

Figure 4. Organization model for the scenario of fire extinguishing

46

Figure 5. Domain model for the scenario of fire extinguishing

 The domain model of the scenario of fire extinguishing is shown in Figure 5.
Domain model of AOM captures the knowledge to be represented within the
system to be designed. Modelling domain knowledge involves identifying the
domain entities and relationships between them. As is illustrated by Figure 5,
fourteen domain entities have been modelled for the scenario of fire extinguishing.
Agents playing the role of Employee are situated in a building. The “Building
layout” consists of “Physical objects” of the types “Wall”, “Fire”, “Door”,
“Furniture”, “Fire extinguisher”, and “Window”. All the physical objects are
situated in the building and are modelled as contained by the “Memory” domain
entity. Agents playing the roles of Trained Employee and Untrained Employee
perform actions on physical objects and perceive events associated with physical
objects.
 At the abstraction layer of platform-independent design, agent types and the
shared and private knowledge by agents of these types first have to be decided. In
the scenario of fire extinguishing, the role Employee is mapped to the agent type
Virtual Agent. There can be several instances of the agent type Virtual Agent. As
agents of the type Virtual Agent will be built according to the cognitive multi-
agent BDI architecture shown in Figure 1, each instance of Virtual Agent in turn
consists of six agents that have been designed to support the cognitive processing
of a believable virtual character.
 As is shown in Figure 2, one of the central model types in platform-independent
design are AOM scenario models. Scenario models of AOM represent for each
scenario its goal from the relevant goal model, the initiating agent, the triggering
event, and the scenario description consisting of numbered steps of the scenario.
Each step models one activity along with the condition for its performing, the
involved role and agent type and the involved physical objects. Table 1 represents
the high-level scenario for achieving the goal “Put down the fire”. According to
Table 1, the activity “Act on fire” is elaborated by another scenario – Scenario 2,
which is represented as Table 2. The scenario modelled as Table 2 represents the
cognitive processing within the multi-agent BDI cognitive architecture for a
virtual character represented in Figure 1.

47

Table 1. The scenario for achieving the goal “Put down the fire”

SCENARIO 1
Goal Put down the fire
Initiator Virtual Agent
Trigger Perceived event associated with the Fire object
DESCRIPTION
Condition Step Activity Role / Agent type Physical objects
 1 Act on fire

(Scenario 1)
Trained Employee / Virtual
Agent

Fire extinguisher
Fire

Table 2. The elaborated scenario for achieving the goal “Put down the fire” by a virtual
character

SCENARIO 2
Goal Put down the fire
Initiator situationAssessmentAgent (ID3)
Trigger Perceived event associated with the Fire object
DESCRIPTION
Cond. Step Activity Agent types and roles

involved
Physical objects

 1 Cognition configuration
 1.1 Subscribe to the Fire object situationAssessmentAgent

(ID3)
Fire

 1.2 Set attentions/state to idle
mode

plannerAgent (ID1)
actionAgent (ID6)

 1.3 Subscribe to domain objects memoryAgent (ID2) Building layout
 1.4 Subscribe to domain objects perceptionAgent (ID4) Building layout
 1.5 Subscribe to body locality selfIdentificationAgent

(ID5)
Locality

 2 Cognition to act on fire
 2.1 Notify fire perceptionAgent (ID4)

plannerAgent (ID1)
Fire

 2.2 Update attention/state plannerAgent (ID1)
 2.3 adoptGoal(act on fire) plannerAgent (ID1)
 2.4 Deliberation and execute

plan

 2.4.1 Locate fire extinguisher plannerAgent (ID1)
memoryAgent (ID2)

Fire
Fire extinguisher

 2.4.2 Execute traversing plan plannerAgent (ID1)
actionAgent (ID6)

Building layout

Loop 2.4.3 Wait for action status plannerAgent (ID1)
situationAssessmentAgent
(ID3)

 2.4.4 Graps the fire extinguisher plannerAgent (ID1)
actionAgent (ID6)

Fire extinguisher

 2.4.5 Locate fire plannerAgent (ID1)
memoryAgent (ID2)

Fire
Fire extinguisher

 2.4.6 Execute traversing plan plannerAgent (ID1)
actionAgent (ID6)

Fire extinguisher

Loop 2.4.7 Wait for action status plannerAgent (ID1)
situationAssessmentAgent
(ID3)

Fire
Fire extinguisher

 2.4.8 Put down the fire plannerAgent (ID1)
actionAgent (ID6)

Fire
Fire extinguisher

 2.5 Update attention/state plannerAgent (ID1)

48

 Based on the scenario models of AOM, we will proceed with designing the
cognitive capabilities of the involved agents by using models put forward by the
Prometheus methodology. Figure 6 presents a cognitive processing overview
model for cognitive agents, modelled as a system overview diagram of
Prometheus. The diagram represents the five agents involved in cognitive
processing – perception agent, action agent, memory agent, planner agent, and
self-identification agent – that together simulate a human mind of a virtual
character.
 Different agents interact by means of the following protocols: “action protocol”,
“perception protocol” and two domain-specific protocols. The action protocol
consists of simple rules that enable receiving action requests from the planner
agent and executing these actions. Actions are executed by sending “execute
action” commands to the body of the virtual agent.
 The perception agent receives from the environment incoming perceptions of
time, events, physical objects, and incoming communication and actions by other
agents. The perception agent makes the information perceived by it available to
other agents by means of the perception protocol. The perception protocol is a
publish-subscribe protocol handling incoming perceptions and publishing the
perceptions to the agents who have subscribed to perceptions of one or another
kind.
 As is modelled explicitly in Figure 6, the action agent and situation assessment
agent are notified about the new actions or events perceived by means of the
“action status” and “event status” messages. In the same way, the memory agent is
notified about the physical objects perceived by the “object percept” messages.
The memory agent, planner agent, and self-identification agent also use in their
work the information contained in the “memory” shared knowledge base.

Figure 6. System overview diagram for a cognitive agent

49

 Figure 7 represents a Prometheus agent overview diagram for one of the agents
involved in the cognitive architecture – the planner agent. An agent overview
diagram models the capabilities of an agent, the triggers of the capabilities and the
execution of the capabilities. The planner agent has the following six capabilities:
“ask for help”, “offer for help”, “update agent state”, “act on fire”, “grasp things”,
and “use things”. Each capability modelled in Figure 7 receives inputs as
messages or from the agent memory. The same model also represents strategies
that support certain complex capabilities. For example, the “ask for help strategy”
supports the “ask for help” capability, and the “explore strategy” and “traversing
strategy” support the “act on fire” capability and finally the “offer help strategy”
and “traversing strategy” support the “offer help” capability. Meanwhile,
strategies also generate messages that request the execution of certain actions. In
addition, a strategy may lead to another strategy or capability. For example, the
“explore strategy” leads to the “traversing strategy” as well as to the “grasp
things” and “use things” capabilities.

Figure 7. Agent overview diagram for the planner agent

5 Implementation of the fire extinguishing scenario

The previous section explained the platform-independent models for the scenario
of fire extinguishing. In this section we focus on the platform-specific design and
implementation of the scenario in the object-oriented agent programming
language (OOAPL) [21] based on the platform-independent models. OOAPL is a
Java-based language with a flexible control and scalability of the agent
deliberation lifecycle for programming BDI agents. In brief, the agent deliberation

50

lifecycle in OOAPL is parallel, concurrent and distributed. This guarantees a
balance between slow and fast deliberation processes. The readers are referred to
[21] for a better understanding of the lightweight, scalable and flexible OOAPL
agent programming platform. While the mind of a virtual character is
implemented as an OOAPL agent, the body of the agent is implemented by the
CIGA middleware. The CIGA middleware [6] supports the development of non-
player characters in virtual worlds.
 Figure 8 shows two screenshots on putting out the fire by virtual characters. The
agents are situated in a “grid world” consisting of two rooms and an open space.
The screenshot on the left shows a virtual agent with an intention to put out the
fire upon perceiving the fire. The screenshot on the right represents the
interactions between two virtual agents while dealing with the fire.

Figure 8. Virtual agents dealing with the fire

 Platform-specific design and implementation of the virtual characters shown in
Figure 8 is straightforward. A software agent implementing the virtual character
subscribes to physical objects of the Fire type, and upon getting notified about a
fire object triggers the goal for its subsequent activities. At the beginning of
executing the scenario, we set one of the virtual agents to the idle mode. The
virtual agent with this kind of behaviour does nothing except observing its
environment and paying attention to a Fire object that has occurred in its
surrounding “grid world”. Once the virtual agent has perceived a fire, the agent
locates the fire extinguisher, moves close to the fire extinguisher, grasps the fire
extinguisher, locates the fire, moves the extinguisher closer to the fire and uses the
fire extinguisher to extinguish the fire. The interaction between the agents making
up the architecture of the virtual agent is based on the “act of fire protocol”
modelled in Figure 8.
 A screenshot shown in the right of Figure 8 shows a variant of the scenario with
two virtual agents located in the “grid world”. The agents are located in two
different places. The first agent is situated in an open space, while the second
agent is situated in a room. The first agent has been trained to extinguish a fire,
whereas the second agent does not know how to put out the fire. Once a fire
occurs in the room, the second agent will therefore only cry for help. As a reaction
to the cry by the second agent, the first agent starts looking for the first agent.
Thereafter the first agent asks for the location of the second agent. After that the
first agent locates the fire extinguisher, moves close to the fire extinguisher, grasps
the fire extinguisher, moves towards the location of the second agent, locates the
fire and uses the fire extinguisher to extinguish the fire.

51

6 Related work

Agent-oriented software engineering methodologies for serious games have not
been much addressed in the literature. Most of the research work in this area
addresses the integration of agent technology with game engines.
 The notion of social intelligence has been introduced to regular BDI virtual
agents as is described in [12]. The article [12] describes applying virtual BDI
agents with cultural parameters for intercultural role-playing simulation games. A
goal-based BDI agent for game bots is introduced in [19]. In that case, the GOAL
programming language has been used to model and implement the virtual agent.
Work has been done to integrate BDI programming platforms like AgentSpeak,
GOAL [19], Jason [18], 2APL [6], JACK, and Jadex[20] into game engines like
Open Wanderland [1], Unity [6, 16], and Unreal engine [19]. In general, that work
is focused on techniques how to integrate BDI programming platforms into a
game engines. The article [16] describes how the ACT-R agent architecture has
been integrated with the Unity engine for controlling the behaviour of a virtual
robot in the Unity-based virtual environment.

7 Conclusions

Cognitive processing within a believable virtual character is complex. This
complexity can be tamed by using multi-agent technology in building such virtual
characters, which results in the multi-agent BDI architecture proposed in this
article. Different agents making up this kind of architecture of virtual characters
can be fully reactive, fully deliberative, partially reactive or partially deliberative.
This paper presents the combination of the AOM and Prometheus methodologies
for modelling the cognitive capabilities of agents by tuning their multi-agent BDI
cognitive architectures. Extension of AOM by Prometheus is required because
AOM does not support the design of BDI agents. By means of the combined
methodology, cognition by a software agent for a virtual character is modelled at
the abstraction layers of conceptual domain modelling, platform-independent
design, and platform-specific design and implementation. In summary, the
proposed in this article combined methodology supports the conceptualization of
cognitive agents that is closer to the concerns of a problem domain at hand and is
easier to understand and validate, and also improves the efficiency and quality of
the cognitive agent development process. Furthermore, the proposed methodology
reduces the complexity of developing cognitive agents. In the future, more
empirical studies are required to further justify the benefits of the combination of
AOM and Prometheus in designing cognitive agents for serious games.

Acknowledgement. The third author of this article has been funded by Shanghai
Foreign Talent Scholarship from P.R. China for doing the research work reported
in the article.

52

References

[1] McClure, G., Chang, M., & Lin, F. (2013, December). MAS controlled NPCs in 3D virtual
learning environment. In Signal-Image Technology & Internet-Based Systems (SITIS), 2013
International Conference on (pp. 1026-1033). IEEE.

[2] Gentile, M., La Guardia, D., Dal Grande, V., Ottaviano, S., & Allegra, M. (2014). An
Agent Based Approach to designing Serious Game: the PNPV case study. International
Journal of Serious Games, 2(1).

[3] Susi, T., Johannesson, M., & Backlund, P. (2007). Serious games: An overview. University
of Skövde Technical Report HS-IKI-TR-07-001. Skövde, Sweden.

[4] Desai, N., & Szafron, D. (2012, October). Enhancing the Believability of Character
Behaviors Using Non-Verbal Cues. In: Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE).

[5] Tence F., Buche C., Loor P. D., & Marc O. (2010). The challenge of believability in video
games: Definitions, agents models and imitation learning. Proceedings of the 2nd Asian
Conference on Simulation and AI in Computer Games, 38–45. Eurosis. 7(50).

[6] Van Oijen, J., Van Doesburg, W., & Dignum, F. (2011). Goal-based communication using
BDI agents as virtual humans in training: An ontology driven dialogue system. In: F.
Dignum (Ed.), Agents for Games and Simulations II, 38-52. Berlin, Germany: Springer.

[7] Duch, W., Oentaryo, R. J., & Pasquier, M. (2008, June). Cognitive Architectures: Where do
we go from here? In: Proceedings of the Second Conference on AGI, Vol. 171, 122-136.

[8] Hindriks, K. V., Van Riemsdijk, B., Behrens, T., Korstanje, R., Kraayenbrink, N., Pasman,
W., & De Rijk, L. (2011). Unreal goal bots. In: F. Dignum (Ed.), Agents for games and
simulations II (pp. 1-18). Berlin, Germany: Springer.

[9] Padgham, L., & Winikoff, M. (2002). Prometheus: A methodology for developing
intelligent agents. In Agent-oriented software engineering III (pp. 174-185). Berlin,
Germany: Springer.

[10] Sterling, L., & Taveter, K. (2009). The Art of Agent-Oriented Modeling. Cambridge, MA,
and London, England: MIT Press.

[11] Zachman, J.A. (1987). A framework for information systems architecture. IBM Systems
Journal, 26 (3)

[12] Luo, Y., Sterling, L., & Taveter, K. (2007, October). Modelling a smart music player with a
hybrid agent-oriented methodology. In Requirements Engineering Conference, 2007. RE'07.
15th IEEE International (pp. 281-286). IEEE.

[13] Cooper, R., Fox, J., Farringdon, J. & Shallice, T. (1996). A Systematic Methodology for
Cognitive Modeling. Artificial Intelligence, 85 (3-44) (1996)

[14] Letichevsky, A. (2014). Theory of Interaction, Insertion Modeling and Cognitive
Architectures. Biologically Inspired Cognitive Architectures, 8 (19-32).

[15] Gascueña, J. M., & Fernández-Caballero, A. (2009). Agent-based modeling of a mobile
robot to detect and follow humans. In: Håkansson, A., Nguyen, N. T., Hartung, R. L.,
Howlett, R. J. & Jain, L. C. (Eds.) Agent and Multi-Agent Systems: Technologies and
Applications. LNCS, Vol. 5559 (80–89). Berlin, Germany: Springer.

[16] Smart, P. R., Scutt, T., Sycara, K., & Shadbolt, N. R. (2014). Integrating ACT-R Cognitive
Models with the Unity Game Engine. In J. O. Turner, M. Nixon, U. Bernardet, & S.
DiPaola (Eds.), Integrating Cognitive Architectures into Virtual Character Design. IGI
Global.

[17] Fox. J. (2000). Making a mind: A cognitive eengineering approach. In: Conference on How
to design a functional mind. AISB Convention.

[18] Sioutis, C., Ichalkaranje, N., & Jain, L. C. (2003, December). A Framework for Interfacing
BDI agents to a Real-time Simulated Environment. In: Proceedings of the 3rd International
Conference of Hybrid Intelligent Systems (HIS, pp. 743-748). Amsterdam, The Netherlands:
IOS Press.

53

[19] Hindriks, K. V., Van Riemsdijk, B., Behrens, T., Korstanje, R., Kraayenbrink, N., Pasman,
W., & De Rijk, L. (2011). Unreal goal bots. In: F. Dignum (Ed.), Proceedings of the Second
Workshop on Agents for Games and Simulations (pp. 1-18). Berlin, Germany: Springer.

[20] Korecko, S., Sobota, B., & Curilla, P. (2014, November). Emotional agents as non-playable
characters in games: Experience with Jadex and JBdiEmo. In: Computational Intelligence
and Informatics (CINTI), 2014 IEEE 15th International Symposium on (pp. 471-476). IEEE.

[21] Dastani, M., & Testerink, B. (2014). From Multi-Agent Programming to Object Oriented
Design Patterns. In Engineering Multi-Agent Systems (pp. 204-226). Berlin, Germany:
Springer.

[22] Jose, V. B., & Francisco, M. (2011). Robotic control systems based on bioinspired multi-
agent systems. International Journal of Advanced Engineering Sciences and Technologies,
8 (1), 32-38.

[23] Xie, W., Ma, J., Yang, M., & Zhang, Q. (2012). Research on classification of intelligent
robotic architecture. Journal of Computers, 7 (2), 450-457.

[24] Jennings, N. R., Moreau, L., Nicholson, D., Ramchurn, S., Roberts, S., Rodden, T., and
Rogers, A. (2014). Human-Agent Collectives. Communications of the ACM, 57 (12).

[25] Havlik, D.; Deri, O.; Rannat, K.; Warum, M.; Rafalowski, C.; Taveter, K.; Kutschera, P.;
Meriste, M. (2015). Training Support for Crisis Managers with Elements of Serious
Gaming. In: Denzer, R., Argent, R.M., Schimak, G., Hřebíček, J. (Ed.). Environmental
Software Systems. Infrastructures, Services and Applications (217−225). Berlin, Germany;
Springer.

[26] Rao, A. S., & Georgeff, M. P. (1995, June). BDI agents: From theory to practice. In ICMAS
(Vol. 95, pp. 312-319).

54

Augmenting Agent Computational Environments
with Quantitative Reasoning Modules

and Customizable Bridge Rules

Stefania Costantini1 and Andrea Formisano2

1 DISIM, Università di L’Aquila
2 DMI, Università di Perugia, GNCS-INdAM

Abstract. There are many examples where large amount of data might be poten-
tially accessible to an agent, but the agent is constrained by the available budget
since access to knowledge bases is subject to fees. There are also several activ-
ities that an agent might perform on the web where one or more stages imply
the payment of fees: for instance, buying resources in a cloud computing con-
text where the agent’s objective is to obtain the best possible configuration of a
certain application withing given budget constraints. In this paper we consider
the software-engineering problem of how to practically empower agents with the
capability to perform such kind of reasoning in a uniform and principled way. To
this aim, we enhance the ACE component-based agent architecture by means of a
device for practical and computationally affordable quantitative reasoning, whose
results actually determine one or more courses of agent’s action, also according
to policies/preferences.

1 Introduction

There are many examples where large amount of data might be potentially accessible to
an agent, but the agent is constrained by the available budget since access to knowledge
bases is subject to fees. There are also several activities that an agent may perform on
the web on behalf of an user where one or more stages imply the payment of fees. An
important example is that of buying resources in a cloud-computing context, where the
agent’s objective is to obtain the best possible configuration for performing certain tasks
in the sense of maximizing performance and minimizing costs, that can anyway stay
withing given budget constraints. The work [33] identifies the problem that an agent
faces when it has limited budget and costly queries to perform. In order to model such
situations, the authors propose a special resource-aware modal logic so as to be able
to represent and reason about what is possible to do with a certain budget available.
The logic can be adapted to reason separately about cost and time limitation, though
an integration is envisaged. Interesting as it is, this work constitutes a good starting
point but it presents two problems: (i) such kind of modal logic is computationally hard
(though this aspect is not discussed in the aforementioned paper) and thus it can hardly
constitute the basis for practical tools; (ii) the axiomatic system of [33] allows one to
prove that something can or cannot be achieved within a certain cost. However, an agent
needs, in general, to become aware of how goals might possibly be achieved, and should
be enabled to choose the best course of action according to its own policies/preferences.

55

In this paper we tackle some issues related to this problem. First, we consider the
software-engineering problem of how to practically empower agents with the capability
to perform such kind of reasoning in a uniform and principled way. Second, we con-
sider the adoption of a reasoning device that enables an agent, which may have several
costly objectives, to establish which are the alternative possibilities within the available
budget, and to select, based upon its preferences, the goals to achieve and the resources
to spend, and finally to implement its choice.

Concerning the first aspect, we enhance the Agent Computational Environment
(ACE) framework [13], which is a software engineering methodology for designing
intelligent logical agents in a modular way. Therefore, in this paper we refer to agent-
oriented languages and frameworks which are rooted in Computational Logic. Mod-
ules composing an agent interact, in ACE, via bridge rules in the style of the Multi-
Context Systems (MCS) approach [7, 8, 10]. Such rules take the form of conjunctive
queries where each conjunct constitutes a sub-query which is posed to a specific mod-
ule. Thus, the result is obtained by combining partial results obtained from different
sources. The enhancements that we propose here for ACE are based upon the flexible
agent-tailored modalities for bridge rules application and for knowledge elaboration de-
fined for the DACMACS framework (Data-Aware Commitment-based managed Multi-
Agent-Context Systems), which is aimed at designing data-aware multi-agent-context
systems [14, 15]. There, bridge rules are proactively triggered upon specific conditions
and the obtained knowledge is reactively elaborated via a management function which
generalizes the analogous MCS concept.

Second, we extend ACEs so as to include modules for specialized forms of reason-
ing, including quantitative reasoning. For this kind of reasoning we suggest to adopt the
RASP framework [17, 19, 16], which is based upon Answer Set Programming (ASP)
and hence it is computationally affordable and reasonably efficient. We show the suit-
ability of such approach by discussing a case study, that will constitute the leading
example throughout the paper.

A strong innovation that this paper proposes is that, after obtaining from a reasoning
module the description of possible courses of actions, bridge rules “patterns” can be
specialized and activated so as to put them into action. This feature is made possible by
an enhanced flexible ACE semantics.

The resulting framework can be seen as a creative blend of existing technologies,
with some relevant formal and practical extensions. Partially specified bridge rules and
their dynamic customization and activation is an absolute novelty and constitutes a rel-
evant advance over MCSs versions, applications and extensions: in fact, bridge rules
have been so far conceived as predefined, ground and not amenable to any adaptation.
Beyond quantitative reasoning, such more general bridge rules may constitute a power-
ful flexible device in many applications.

The paper is organized as follows. Section 2 presents a case study that will consti-
tute the leading example throughout the paper. In Section 3 we discuss the quantitative
reasoning device we suggest to exploit. Sections 4 and 5 present the enhanced ACE
framework and illustrate, on the case study, the dynamic customization of bridge rules.
Section 6 introduces the extended ACE semantics and for completeness we provide in
Section 7 an actual RASP formalization. Concluding remarks are given in Section 8.

56

2 Specification of the Case Study

In this section we provide the specification of a case study which we will adopt in the
rest of the paper for the illustration of the proposed enhancements to the ACE frame-
work. In Section 7 we will present a realistic implementation in a specific existing
approach for quantitative reasoning, shortly introduced in the next section.

We consider a student, that will be represented by an agent which can be seen as
her “personal assistant agent”. Upon completing the secondary school, she wishes to
apply for enrollment to an US university. Each application has a cost, and the tuition
fee will have to be paid in case of admission and enrollment. The student has an allotted
maximum budget for both. Thus the agent, on behalf of the student, has to reason about:
(i) the universities to which an application will be sent; (ii) the university where to
enroll, in case a choice can be made.

Actually, the proposed case study is seen as a prototype of a wide number of situa-
tions where two kinds of quantitative reasoning are required:
1. The cost of knowledge, as in practical terms a student applies in order to know

whether she is admitted.
2. Reasoning under budget limits, as a student may send an application only if: (i) she

can afford the fees related to the application; (ii) in case of admission, she can then
afford the tuition fees.
If a solution is found considering her preferences and her budget, she will then be

able to apply and, if admitted, to enroll. In case more than an option is available, a
choice is required so as to select the “best” one according to some criteria.

Without any pretension to precision, we consider the steps that a student has to
undergo in order to apply for admission:

1. Pass the general SAT test.
2. Pass the specific SAT test for the subject of interest (such as Literature, Mathemat-

ics, Chemistry, etc.)
3. In case of foreign students, pass the TOEFL test.
4. Fill the general application on the application website (that we call collegeorg).
5. Send the SAT results to the universities of interest.
6. Complete the application for the universities of interest.

All these steps are subject to the payment of fees, which are fixed (the fee is independent
of the university) for steps 1-4 and depend upon the selected university for steps 5-6.
In the example we assume that the student has a budget for the application (say 1500
US dollars) and a limit about the tuition fee she is able to pay (say 22000 US dollars
per year). However, she has a list of preferred universities, and within such list she
would apply only to universities whose ranking is higher than a threshold. Additionally,
since she likes basketball, all other things being equal (ceteris paribus) she would prefer
universities with the best rankings of the basketball team.

3 Resource-based Reasoning

In the case study, the student’s personal assistant agent needs the support of some kind
of quantitative reasoning module. Such module should in general be able to provide

57

the agent, given one or more objectives, with a description of the different ways of
achieving the objectives while staying within a budget. A desirable property of the
reasoner would be that of allowing preferences and constraints to be expressed about
objectives to achieve and modalities for achieving them. A mandatory requisite is the
ability to perform such reasoning in a computationally affordable way.

In knowledge representation and reasoning, forms of quantitative reasoning are pos-
sible, for example, in Linear Logics and Description Logics. For Linear Logic in partic-
ular, several programming languages and theorem provers based on its principles exist
(cf. [16] for a discussion). In this paper we adopt RASP (Resource-based ASP) [17, 19],
which has in fact been proven in [18] to be equivalent to an interesting fragment of
Linear Logic, specifically, to an empowered Horn fragment allowing for a default nega-
tion that Linear Logic does not provide (though still remaining within an NP-complete
framework). RASP extends ASP, which is a well-known logic programming paradigm
where a program may have several “models”, called “answer sets”, each one represent-
ing a possible interpretation of the situation described by the program (cf., among many,
[29]). In particular, RASP explicitly introduces in ASP the notion of resource, and sup-
ports both formalization and quantitative reasoning on consumption and production of
resources. RASP also provides complex preferences about spending resources (and in
this it is different from the several approaches to preferences that have been defined
for ASP, see e.g., [2, 6, 11, 25] and the references therein). Compared with the “com-
petitors”, RASP represents possible different uses of a resource and non-determinism in
general by means of different answer sets, rather than exploring the various possibilities
via backtracking in a Prolog-like fashion. The RASP inference engine is based upon
publicly available ASP solvers [35] that are remarkably well-performing and subject
of intensive research and development. After the seminal work of [34] one can men-
tion [26, 28, 32, 1, 31, 22], among the most recent developments. Specifically, RASP
execution is based upon a front-end module called Raspberry which translates RASP
programs (via a non-trivial process, see [19] for the details) into ASP. The resulting
program can be executed by common ASP solvers.

As a side note, we observe that the clasp ASP solver allows one to add external
functions to ASP programs. This is done by defining deterministic functions in a script-
ing language such as lua or python. Relying on this possibility, one might envisage a
re-implementation of the RASP framework exploiting such feature of this specific ASP
solver, instead of performing a translation from RASP into ASP, as done in Raspberry.
Another recently proposed extension of ASP is H-ASP [12], where propositional rea-
soning is combined with external sources of numerical computation. The main aim of
H-ASP is to allow users to reason about a dynamical system by simulating its possible
evolutions along a discretized timeline. The external computations are used to compute
the system transitions and may involve both continuous and discrete numerical vari-
ables. The expressive power of the resulting framework directly depends on the kind
of numerical tasks one integrates, and the computational complexity can exceed NP.
Clearly, thanks to the generality of ACE, one could integrate modules based on H-ASP
in the ACE framework, similarly to what done for RASP. However, in the case of RASP
we stay within NP and directly rely on common “pure-ASP” engines without the need
of integrating (and encoding) further computational services.

58

We are not aware of other reasoning frameworks that combine logic and quantitative
techniques, apart from the one proposed in [33], which however is not implemented
and, as mentioned, in its present form can hardly admit a computationally affordable
version. So, there is nowadays no competitor approach to RASP in practical logic-based
quantitative reasoning and its applications in the agent’s field.

4 Enhancing the ACE Framework

The ACE framework as defined in [13] considers an agent as composed of:
1) the “main” agent program;
2) a number of Event-Action modules for Complex Event Processing;
3) a number of external contexts the agent can access in order to gather information.

ACE is therefore a highly modular architecture, where the composing modules com-
municate via bridge rules (to be seen below) in the style of Multi-Context Systems
(MCSs) [7, 8, 10]. MCSs constitute in fact a particularly interesting approach for mod-
eling information exchange among heterogeneous sources because, within a neat for-
mal definition, it is able to accommodate real heterogeneity of sources by explicitly
representing their different representation languages and semantics. The same holds for
ACEs, where: external contexts are understood as in MCS, i.e., they can be queried but
cannot be accessed in any other way; and where the “local” agent’s modules (main agent
program and event-action modules) can be defined in any agent-oriented computational-
logic-based programming language, such as, e.g., DALI, AgentSpeak, GOAL, 3APL,
METATEM, KGP, etc. (see [3, 4, 5, 20, 21, 24, 27, 30] and the references therein), or
also in other logic formalisms such as, e.g., ASP (see [29] and the references therein).

In the present setting, we augment the framework with a set of Reasoning Modules,
say R1, . . . , Rq , q ≥ 0, that we see as specialized modules which are able to perform
specific forms of reasoning by means of the best suitable formalism/technique/device.
Among such modules we may have quantitative reasoning modules. Therefore, an (en-
hanced) Agent Computational Environment (ACE) A is now defined as a tuple〈

A,M1, . . . ,Mr, C1, . . . , Cs, R1, . . . , Rq

〉

where module A is the “basic agent”, i.e., an agent program written in any agent-
oriented language. The “overall” agent is obtained by equipping the basic agent with
the following facilities. The Mis are “Event-Action modules”, which are special mod-
ules aimed at Complex Event Processing, that allow the agent to flexibly interact with
a complex changing environment. The Rjs are “Reasoning modules”, which are spe-
cialized in specific reasoning tasks. The Cks are contexts in the sense of MCSs, i.e.,
external data/knowledge sources that the agent is able to query about some subject, but
upon which it has no further knowledge and no control: this means that the agent is
aware of the “role” of contexts in the sense of the kind of knowledge they are able to
provide, but is unable in general to provide a description of their behavior/contents or
to affect/modify them in any way.

Interaction among ACE’s components occurs via bridge rules, inspired by those in
MCS. They can be seen as Datalog-like queries where however each sub-query can be
posed to a different module. In MCS, bridge rules have, in general, the following form:

s← (c1 : p1), . . . , (cj : pj), not (cj+1 : pj+1), . . . , not (cm : pm).

59

The meaning is that the rule is applicable and s can thus be added to the conse-
quences of a module’s knowledge base whenever each atom pr, r ≤ j, belongs to the
consequences of module cr (that can be a context or an event-action module, or the
basic agent), while instead each atom pw, j < w ≤ m, does not belong to the conse-
quences of cw. Practical run-time bridge-rule applicability will consist in posing query
pi to context ci. In case for some of the pis the context is omitted, then the agent is
querying its own knowledge base. The part (c1 : p1), . . . , (cj : pj) is the positive body
of the rule, while the remaining part is the negative body.

We introduce the following restriction on bridge rules bodies: the basic agent A can
query any other module (and, clearly, if it is situated in a MAS context it can commu-
nicate with other agents according to some kind of protocol). The Mis and the Ris can
query external contexts and the basic agent. Contexts can only query other contexts, i.e.,
they cannot access agent’s knowledge. We also assume (for simplicity and without loss
of generality) that bridge-rule heads are unique, i.e., there are never two bridge rules
with the same head.

In Managed MCSs the conclusion s, which represents the “bare” result of the appli-
cation of the bridge rule, becomes o(s) where o is a special operator, whose semantics
is provided by a module-specific management function. The meaning is that the result
computed by a bridge rule is not blindly incorporated into the “target” module knowl-
edge base. Rather, it is filtered, adapted, modified and elaborated by an operator that can
possibly perform any elaboration, e.g. evaluation, format conversion, belief revision. To
the extreme, the new knowledge item can even be discarded if not deemed to be useful.

In the basic agent we adopt, with suitable adaptations the special agent-oriented
modalities introduced in DACMACS. There, bridge-rule activation and management-
function application has been adapted to the specific nature of agent systems. First,
while bridge rules in MCSs are conceived to be applied whenever applicable (they can
be seen, therefore, as a reactive device), DACMACS provides a proactive application
upon specific conditions. Second, the incorporation of bridge rule results via the man-
agement function is separated from bridge-rule application. In particular, bridge-rule
application is determined by a trigger rule of the form

Q enables A(x̂)

where: Q is a query to agent’s internal knowledge-base and A(x̂) is the conclusion of
one of agent’s bridge rules. If query Q (the “trigger”) evaluates to true, then the bridge
rule is allowed to be applied. A trigger rule is proactive in the sense that the application
of a bridge rule is enabled only if and when the agent during its operation concludes Q.
The bridge rule will be actually applied according to agent’s internal control modalities,
and will return its results in x̂. The result(s) x̂ returned by a bridge rule with head
A(x̂) will then be exploited via a bridge-update rule of the following form (where β(x̂)
specifies the operator, management function and actions to be applied to x̂):

upon A(x̂) then β(x̂)

We propose a relevant improvement concerning bridge rules. In particular, in MCSs
bridge rules are by definition ground, i.e., they do not contain variables: in [9], it is liter-
ally stated that [in their examples] they “use for readability and succinctness schematic

60

bridge rules with variables (upper case letters and ’ ’ [the ’anonymous’ variable])
which range over associated sets of constants; they stand for all respective instances
(obtainable by value substitution)” where however such “placeholder” variables occur
only in the pis while instead the cis (contexts’ names) are constants. This is a serious
expressive limitation, that we have tackled in related work. In fact, we admit variables
in both the pis in bridge-rule bodies and in the head s, to be instantiated at run-time by
the queried contexts. We also admit contexts in the body to be selected from a directory
according to their role. Here, we propose a further relevant enhancement: we allow con-
texts occurring in the body of main agent’s A bridge rules to be instantiated via results
returned by ACE’s other modules. So, such bridge rules will have the following form:

s← (C1 : p1), . . . , (Cj : pj), not (Cj+1 : pj+1), . . . , not (Cm : pm).

where each Ci can be either a plain constant (as before) or an expression of the
form mi(ki) that we call context designator, which is a term where mi can be seen
as a(n arbitrary) meta-function indicating the required instantiation, and ki is a con-
stant that can be seen as analogous to a Skolem constant. Such term indicates the
kind of context to which it must be substituted before bridge-rule execution, so it
might be, for instance, university(u), student data(sd), treatment database(d),
diagnostic expert system(de). There is no fixed format, rather it is intended as a des-
ignation of the required-for knowledge source, that can be either a knowledge repository
or a reasoning module.

A bridge rule including context designators will be indicated as a bridge rule pat-
tern, as it stands for its versions obtained by substituting the designators with actual
contexts’ names. Bridge-rule instantiation may be performed by an agent also by means
of bridge-update rules, that are in charge of replacing designators with actual suitable
knowledge sources. We assume that bridge-update rules’ conclusion β(x̂) is in general
a conjunction, possibly including actions of the following distinguished forms:
(i) record(Item), which simply adds Item to A’s knowledge base; Item can be either

the “plain” bridge-rule result, or it can be obtained by processing such result via
the evaluation of other atoms in β(x̂));

(ii) incorporate(Item), which performs some more involved elaboration for incorpo-
rating Item into A’s knowledge base. Notice that incorporate is meant as a dis-
tinguished predicate, to be defined according to the specific application domain; in
particular, it is intended to implement some proper form of belief revision.

(iii) instantiate(S ,mi(ki),L) which, for every bridge rule ρ with head matching with
S, considers the context designator mi(ki) and a list L of constants, and generates
as many instances of ρ as obtained by substituting mi(ki) (wherever it occurs) by
elements ofL. A bridge rules will be potentially applicable whenever all contexts in
its body are constants, i.e., whenever all context designators, if present, have been
replaced by actual contexts’ names.

(iv) enable(S ,Q), which enables the application of a potentially applicable bridge
rule ρ whose head matches with S and with associated trigger rule of the form
Q enables S. It does so by generating its trigger, i.e., by adding Q as a new fact.

The combination of the introduction of both context designators and the instantiate
actions extends the expressiveness of the bridge-rule approach: even allowing variables

61

in place of contexts’ names would not allow for the specific customization performed
here. The purpose of defining context designators as terms is that of avoiding the re-
quirement of the involved domains to be finite. In fact, context designators can denote
values in an infinite domain, where, however, a finite number of instantiate actions
generates a finite number of customized bridge rules. Notice that the computational
complexity of the overall framework depends upon the computational complexity of
the involved modules. In [8, 9] significant sample cases are reported.

5 Case Study: Bridge Rules Customization and Application

In order to explain the features that we have introduced so far we apply them to the case
study. The agent acting on behalf of a prospective college student would for instance
include the following trigger rule:

wish to enroll(Universities,Budget) enables
chooseU (Universities,Budget ,Selected UniversitiesL)

The meaning is that the agent is supposed to be able to conclude at some stage of its
operation wish to enroll(Universities,Budget), where Universities is the list of uni-
versities which are of interest for the student, and Budget is the budget which is avail-
able for completing the application procedure. Whenever this conclusion is reached,
the trigger rule is proactively activated, thus enabling a suitable bridge rule. This bridge
rule exploits a quantitative reasoning module and might correspond to this simple bridge
rule pattern, where however there is the relative context designator qr mod(mymod)
to be instantiated.

chooseU (Universities,Budget ,Selected UniversitiesL)←
qr mod(mymod) : chooseU (Universities,Budget ,Selected UniversitiesL)

Let us assume that the agent somehow (dynamically) instantiates this designator,
e.g., to the name of a RASP module rasp mod , thus obtaining:

chooseU (Universities,Budget ,Selected UniversitiesL)←
rasp mod : chooseU (Universities,Budget ,Selected UniversitiesL)

The RASP module, invoked via a suitable plugin, will return its results in
Selected UniversitiesL, that will be a list representing the potential options for send-
ing applications while staying within the given budget. A relevant role is performed by
the corresponding bridge-update rule, which may have the form:
upon chooseU (Universities,Budget ,Selected UniversitiesL) then

preferred subject(Subject),
instantiate(apply(Univ ,ResponseUniv),myuniv(u),Selected UniversitiesL),
nearest sat center(Sc), nearest toefl center(Tc),
instantiate(general tests(Subject ,R1 ,R2 ,R3), sat center(sc), [Sc]),
instantiate(general tests(Subject ,R1 ,R2 ,R3), language center(lc), [Tc]),
enable(general tests(Subject ,R1 ,R2 ,R3), enabledgentest)

By evaluating the sub-queries from left to right, as it is usual in Prolog, this rule
will determine the preferred subject Subject , and via an instantiate action it will create

62

several copies of a bridge rule which finalizes the application (see below), namely one
copy for each university included in Selected UniversitiesL. Notice that such bridge
rules are not enabled yet. Then, the bridge-update rule finds the contexts’ names Sc
and Lc of nearest SAT and language-test centers respectively, where the student may
perform the tests. The subsequent two instantiate actions, together with the enable
action, will instantiate and trigger a suitable bridge rule pattern (shown below). The
trigger part is in particular:

enabledgentest .
enabledgentest enables general tests(Subject ,R1 ,R2 ,R3)

which, as said, enables a bridge rule obtained by the following bridge rule pattern via its
specialization to contexts’ names Sc and Lc. This bridge rule will take care of perform-
ing the general tests, (among which the language certification) and filling the general
part of the application.

general tests(Subject ,R1 ,R2 ,R3)← sat center(sc) : general SAT test(R1),
sat center(sc) : specific SAT test(R2),
language center(lc) : language certification(R3),
collegeorg : fill application

Each test will return its results, which are then dynamically recorded, whenever
available, by the bridge-update rule:

upon general tests(Subject ,R1 ,R2 ,R3) then record(test res(R1 ,R2 ,R3))

The recording of test results enables, via the following trigger rule, the application
of the bridge rules, one for every selected university Univ , each of which will: send test
the test results to that university; finalize the university-specific part of the application;
wait for the response, returned in ResponseUniv .

upon test res(R1 ,R2 ,R3) then apply(Univ ,ResponseUniv)

The bridge rule pattern from which such bridge rules are obtained is:

apply(Univ ,ResponseUniv)← test res(R1 ,R2 ,R3),
myuniv(u) : send test results(R1 ,R2 ,R3),
myuniv(u) : complete application(ResponseUniv)

The corresponding bridge-update rules, of the form

upon apply(Univ ,ResponseUniv) then record(response(Univ ,Response))

will record the responses, to allow a choice to be made among the universities that have
returned a positive answer. Finally, enrollment must be finalized (code not shown here).
Notice that, in the above bridge rules, some elements in the body implicitly involve the
execution of specific actions (such as the payment of fees) that may take time to be
executed, and may also involve user intervention (e.g., the student must personally and
practically go to perform the SAT and TOEFL tests). Such actions have to be specified
in the internal definition of the involved module(s), while user interventions emerge
from the interaction between the agent and the user. For lack of space we do not discuss
plan revision strategies (that might be needed in case of failure of some of the above
steps), to be implemented via the agent’s reactive and proactive features.

63

6 Semantics

In order to account for heterogeneity of composing modules, in MCSs and then in
DACMACSs and in ACEs each module is supposed to be based upon a specific logic.
Reporting from [8], a logic L is a triple (KBL;CnL;ACCL), where KBL is the set
of admissible knowledge bases of L. A knowledge base is a set of KB-elements, or
“formulas”. CnL is the set of acceptable sets of consequences, whose elements are data
items or “facts”. Such sets can be called “belief sets” or simply “data sets”. ACCL :
KBL → 2CnL is a function which defines the semantics of L by assigning to each
knowledge-base a set of acceptable sets of consequences.

For any of the aforementioned frameworks, consider an instanceA = 〈A1, . . . , Ah〉
composed of h distinct modules, each of which can be either the basic agents, or an
event-action module, or a reasoning module, or an external context. Each module is
seen asAi = (Li; kbi; bri) where Li is a logic, kbi ∈ KBLi is the module’s knowledge
base and bri is a set of bridge rules. A data state of A is a tuple S = (S1, . . . , Sh) such
that each of the Sis is an element of Cni, i.e. a set of consequences derived from Ai’s
knowledge base according to the logic in which module Ai is defined.

When modules are not considered separately, but rather they are connected via
bridge rules, desirable data states, called equilibria, are those where bridge-rule ap-
plication is considered. In MCSs, equilibria are those data states S where each Si is
acceptable according to function ACCi associated to Li, taking however bridge rules
application into account. Technically, a data state S is an equilibrium iff, for 1 ≤ i ≤ n,
it holds that Si ∈ ACCi(mngi(app(S), kbi)). This means that if one takes the knowl-
edge base kbi associated to module Ai, considers all bridge rules which are applicable
in data state S (i.e., S entails their body), applies the rules, applies the management
function, it obtains exactly Si (or at least Si is one of the possible sets of consequences).
Namely, an equilibrium is a data state that encompasses the application of bridge rules.
In dynamic environments however, this does not in general imply that a bridge rule is
applied only once, and that an equilibrium, once reached, lasts forever (conditions for
reachability of equilibria are discussed in literature, see [23] and the references therein).
In fact, contexts are in general able to incorporate new data items, e.g, as discussed in
[10], the input provided by sensors. Therefore, a bridge rule is in principle re-evaluated
whenever a new result can be obtained, thus leading to evolving equilibria.

As DACMACS and ACEs are frameworks for defining agents and multi-agent sys-
tems, the interaction with the external environment and with other agents goes beyond
simple sensor input and must be explicitly considered. This is done by assuming, simi-
larly to what is done in Linear Temporal Logic, a discrete, linear model of time where
each state/time instant can be represented by an integer number. States t0, t1, . . . can be
seen as time instants in abstract terms, though in practice we have ti+1 − ti = δ, where
δ is the actual interval of time after which we assume a given system to have evolved.

Consider then a notion of updates: for i > 0, let Πi = 〈ΠiA1
, . . . ,ΠiAh

〉 be a
tuple composed of finite updates performed to each module and let Π = Π1, Π2, . . .
be a sequence of such updates performed at time instants t1, t2, Let UE , for E ∈
{A1, . . . , Ah}, be the update operator that each module employs for incorporating the
new information, and let U be the tuple composed of all these operators. Notice that

64

each UE , i.e., each module-specific operator, encompasses the treatment of both self-
generated updated and updated coming from interaction with an external environment.

In this more general setting data states evolve in time, where a timed data state at
time T is a tuple ST = (ST

1 , . . . , S
T
h) such that each ST

i is an element ofCni at time T .
The timed data state S0 is an equilibrium according the MCSs definition. Later on how-
ever, transition from a timed data state to the next one, and consequently the definition
of an equilibrium, is determined both by the update operators and by the application of
bridge rules. A bridge rule ρ occurring in each composing module is now potentially
applicable in ST iff ST entails its body. However, in the basic agent a potentially ap-
plicable bridge rule is applied only when it has been triggered by a trigger rule of the
form seen above, i.e., if for some T ′ ≤ T we have that ST ′ |= Q. In any event-action
module M instead, a potentially applicable bridge rule is applied only if the module is
active, i.e., if ST ′ |= trM , where trM is an event expression which triggers the module
evaluation (cf. [13]). Therefore, a timed data state of M at time T + 1 is an equilib-
rium iff, for 1 ≤ i ≤ n, it holds that ST+1

i ∈ ACCi(mngi(App(ST), kbT+1
i)), where

kbT+1
i = Ui(kbTi , Πi

T) and App is the extended bridge-rule applicability evaluation
function. The meaning is that an equilibrium is now a data state which encompasses
bridge rules applicability (with the new criteria) on the updated knowledge base. So,
contexts now evolve in time, where we may say that A0

i = (Li; kbi; bri) as before,
while AT

i = (Li; kb
T
i ; bri). As discussed in [14], if both the update operators and the

management functions preserve modules’ consistency, then conditions for existence of
an equilibrium (at some time T) are unchanged w.r.t. MCSs and DACMACS.

Notice that, for each bridge rule which is triggered (and so is applicable) at time T ′

the state when it is actually applied is not necessarily T ′, nor T ′ + 1. In fact, a bridge
rule becomes potentially applicable whenever a data state entail its body. So, the actual
procedural sequence is the following:

– ST ′ |= Q for some trigger rule concerning bridge rule with conclusion A(x̂), and
then such a rule is executed at some time T ′′ ≥ T ′.

– At time T ≥ T ′′ the results will be returned by the modules which are queried in
the rule body; the case where T ′ = T , i.e., the bridge-rule body succeeds instan-
taneously, is an ideal extreme which is hardly the case in practice. In fact, internal
and external modules may take some (a priori unpredictable) amount of time for
returning their results.

– At time T , bridge-rule results will be elaborated by the management function, in
our case implemented by the bridge-update rule.

The important aspect that allows us to smoothly incorporate enhanced ACE fea-
tures in this semantics is that knowledge base updates in an agent are not necessarily
determined from the outside. Rather, (part of) an update can also be the result of proac-
tive self-modification. So, the generality and flexibility of ACE’s semantics allows us
to introduce advanced features without needing substantial modifications.

In particular, we consider bridge rule patterns as elements of the agent’s knowl-
edge base. A bridge rule pattern will produce new bridge rules only when its context
designators will be instantiated. Such instantiation can be seen as a part of a self-
modification, i.e, it can be seen as an update. Therefore, for the main agent we now
have A0

i = (Li; kbi; bri) and AT
i = (Li; kb

T
i ; br

T
i), where at each subsequent time

65

the set of bridge rule associated to the module can be augmented by newly generated
instances. The other definitions remain unchanged. This limited though effective se-
mantic modifications constitute, in our opinion, a successful result of the research work
that we present here. In fact, we obtain more general and flexible systems without sig-
nificantly departing from the original MCSs’ semantics, and this grants our approach a
fairly general applicability.

7 Case Study: RASP Implementation

Below we discuss how to represent in RASP the case study discussed in Section 2. We
do not report the full code, that the reader can find on the web site http://www.dmi.
unipg.it/formis/raspberry/ (section “Enrollment”) where the solver Raspberry
can also be obtained.3 Our aim is to have a glance at how RASP works, and to demon-
strate that the proposed approach is not only a more general architecture than basic
ACE, but it has indeed a practical counterpart.

RASP code clearly must include a list of facts defining the universities to which the
students is potentially interested, the SAT subjects (in general), and the SAT subjects
corresponding to Courses (or Schools) available at each university.

% Universities
university(theBigUni). university(theSmallUni).
university(thePinkUni). university(theBlueUni).
university(theGreenUni).
% SAT subjects
sat_subject(literature). sat_subject(mathematics).
sat_subject(chemistry).
% SAT subjects in each University
availableSubject(theBigUni, S) :- sat_subject(S).
availableSubject(theGreenUni, S) :- sat_subject(S).
availableSubject(theSmallUni, mathematics).
availableSubject(thePinkUni, mathematics).
availableSubject(thePinkUni, literature).
availableSubject(theBlueUni, mathematics).
availableSubject(theBlueUni, chemistry).

Below we then list: the tuition fees and the maximum fee allowed; the university rank-
ings and the minimum required; the basketball team ranking, as it constitutes an addi-
tional evaluation factor.

% Tuition fees
tuitionFee(theBigUni, 21000). tuitionFee(theSmallUni, 16000).
tuitionFee(thePinkUni, 15000). tuitionFee(theBlueUni, 25000).
tuitionFee(theGreenUni, 15000).
% Constraint C1: Tuition fee cannot exceed this threshold
maxTuition(22000).

3 Raspberry, the grounder gringo (v.3.0.5), and the solver clasp (v.3.1.3) are used as follows:
raspberry 2.6.5 -pp -l3 -n 15000 -i enrollment pref.rasp > enrollment pref.asp

gringo-3.0.5 enrollment pref.asp | clasp-3.1.3 0

66

% University reputation ranking R
reputation(theBigUni, 100). reputation(theSmallUni, 90).
reputation(thePinkUni, 80). reputation(theBlueUni, 75).
reputation(theGreenUni, 60).
% Constraint C2: R must be higher than this threshold
reputationThrs(70).
% BasketballTeam Ranking
extraRank(theSmallUni, 10). extraRank(theBigUni, 10).
extraRank(thePinkUni, 8). extraRank(theBlueUni, 8).
extraRank(theGreenUni, 6).

The RASP fact below states that we have 1500 dollars, sum intended here as the
budget available for completing applications. In general, symbol ’#’ indicates that an
atom represents a resource. The constant before ’#’, here ’dollar’, indicates the (arbi-
trary) name of the resource. The number after the ’#’ indicates an amount. In case of a
fact, this amount is available initially, and can be then (in general) either consumed or
vice versa incremented, as in RASP resource production can also be modeled.
% Budget for the application procedure
dollar#1500.

Now, the subject of interest and (if applicable) the status as foreign prospective
students are indicated. Concerning the English language, nothing needs to be done if
the student is not foreign, otherwise the TOEFL fee must be payed for performing the
required test (we remind the reader that this RASP program evaluates the necessary
expenses, so it is concerned with fees).
% My_subject
my_subject(mathematics).
% Omit the following fact if not foreign:
foreign.
% Language prerequisite
languageReqOK :- not foreign.
languageReqOK :- testTOEFLfee, foreign.

The universities where to potentially apply are derived according to the preferred
subject, and the constraints concerning the university ranking and tuition fee. The stu-
dent can apply if some university meeting the required requisites is actually found.
% Filtering of Universities
canApply(U,S) :- university(U), my_subject(S), reputation(U, R),

availableSubject(U, S), reputationThrs(Th), R > Th,
maxTuition(M), tuitionFee(U, Tu), Tu < M.

canApplyForSubject(Subj) :- canApply(Univ,Subj).
canApply :- canApply(Univ,Subject).

We now introduce proper RASP rules that perform quantitative reasoning, specifi-
cally by considering the fees for the different kinds of tests. The reader can ignore the
prefix [1-1] which means that whenever the rule is applied, or “fired”, this is done only
once. This specification is not significant here, whereas it is useful in the description of
more complex resource production/consumption processes.

67

% 1) General SAT test, fee1 fixed
[1-1]: testSATfeeGen :- dollar#300, canApply.

% 2) Disciplinary SAT test, fee2 fixed
[1-1]: testSATfeeSbj(mathematics) :-

dollar#170, canApplyForSubject(mathematics).
[1-1]: testSATfeeSbj(literature) :-

dollar#180, canApplyForSubject(literature).
[1-1]: testSATfeeSbj(chemistry) :-

dollar#150, canApplyForSubject(chemistry).
[1-1]: testSATfeeSbj(physics) :-

dollar#160, canApplyForSubject(physics).
% 3) For foreign student, TOEFL fee3 fixed
[1-1]: testTOEFLfee :- dollar#200, foreign, canApply.

% 4) Collegeorg application, fee4 fixed
[1-1]: testCollegeOrg :- dollar#130, canApply.

A general rule with head testGeneralDone then establishes whether all general
tests have been considered. If the available budget is too low and so no applications can
issued, then no money is actually spent. Otherwise, the costs related to potential ap-
plications and the remaining amount (if any) are computed. Clearly, this code (omitted
here) performs a quantitative evaluation and does not execute actual actions, which are
left to the agent.

At this point, the Raspberry RASP solver can compute all solutions which maximize
the number of applications. Solutions can be further customized with respect to the
constraints. For instance, the standard #maximize ASP statements allow one to prefer
universities with the best ranking and, in case of equivalent solutions, the ones with the
best basketball team ranking (see the full code in the web site mentioned earlier, for the
details on how to optimize the solution and enforce student preferences).

With the given facts, the best preferred solution provided by Raspberry involves
applying to thePinkUni and theBigUni, with a total rating (sum of the two rankings) of
180 for the universities and 18 for the basketball teams.

If omitting maximization, there is a second solution which involves applying to
thePinkUni and theSmallUni, with a total rating (sum of the two rankings) of 170 for
the universities and 18 for the basketball teams.

The RASP module always returns the remaining (not spent) amount which is 90
dollars in the former case and 120 dollars in the latter one. Then, the agent might in
general choose the best solution. However, it might instead choose another one based
upon other criteria not expressed in the RASP program, i.e., geographic location or
acceptance rates or maybe lesser expense, in case there would be relevant differences.

8 Concluding Remarks

The contribution of this paper is twofold. First, we have demonstrated, also by means
of a practical example, how quantitative reasoning can be performed in agent-based
frameworks. Second, we have enhanced modular approaches inspired to MCSs with
partially specified bridge rules, that can be dynamically customized and activated ac-
cording to the agent’s reasoning results. The approach of this paper is fairly general,

68

and can be thus adapted to several application domains and to different agent archi-
tectures. Since no significant related work exists, our approach to coping with the cost
of knowledge and the cost of action is relevant in a variety of domains, from logistics
to configuration to planning, which are particularly well-suited for agents and MAS.
An important application that we envisage is planning in robotic environments, where
agents are embodied in robots that have limited resources available (first of all energy)
and must complete their tasks within those limits, while possibly giving priority to the
most important/urgent objectives.

References

[1] M. Alviano, C. Dodaro, W. Faber, N. Leone, and F. Ricca. WASP: A native ASP solver
based on constraint learning. In P. Cabalar and T. C. Son, editors, Proc. of LPNMR 2013,
volume 8148 of LNCS, pages 54–66. Springer, 2013.

[2] M. Bienvenu, J. Lang, and N. Wilson. From preference logics to preference languages, and
back. In Proc. of KR 2010, pages 414–424, 2010.

[3] R. H. Bordini, L. Braubach, M. Dastani, A. E. Fallah-Seghrouchni, J. J. Gómez-Sanz,
J. Leite, G. M. P. O’Hare, A. Pokahr, and A. Ricci. A survey of programming languages
and platforms for multi-agent systems. Informatica (Slovenia), 30(1):33–44, 2006.

[4] R. H. Bordini and J. F. Hübner. BDI agent programming in AgentSpeak using Jason. In
F. Toni and P. Torroni, editors, CLIMA VI, selected papers, volume 3900 of LNCS, pages
143–164. Springer, 2006.

[5] A. Bracciali, N. Demetriou, U. Endriss, A. Kakas, W. Lu, P. Mancarella, F. Sadri, K. Stathis,
G. Terreni, and F. Toni. The KGP model of agency: Computational model and prototype
implementation. In Global Computing: IST/FET Intl. Workshop, LNAI 3267, pages 340–
367. Springer, 2005.

[6] G. Brewka, J. P. Delgrande, J. Romero, and T. Schaub. asprin: Customizing answer set
preferences without a headache. In B. Bonet and S. Koenig, editors, Proc. of AAAI-15,
pages 1467–1474. AAAI Press, 2015.

[7] G. Brewka and T. Eiter. Equilibria in heterogeneous nonmonotonic multi-context systems.
In Proc. of AAAI-07, pages 385–390. AAAI Press, 2007.

[8] G. Brewka, T. Eiter, and M. Fink. Nonmonotonic multi-context systems: A flexible ap-
proach for integrating heterogeneous knowledge sources. In M. Balduccini and T. C. Son,
editors, Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning,
volume 6565 of LNCS, pages 233–258. Springer, 2011.

[9] G. Brewka, T. Eiter, M. Fink, and A. Weinzierl. Managed multi-context systems. In
T. Walsh, editor, Proc. of IJCAI 2011, pages 786–791. IJCAI/AAAI, 2011.

[10] G. Brewka, S. Ellmauthaler, and J. Pührer. Multi-context systems for reactive reasoning in
dynamic environments. In T. Schaub, editor, Proc. of ECAI-14. IJCAI/AAAI, 2014.

[11] G. Brewka, I. Niemelä, and M. Truszczyński. Preferences and nonmonotonic reasoning.
AI Magazine, 29(4), 2008.

[12] A. Brik. Extensions of Answer Set Programming. PhD thesis, University of California, San
Diego, 2012.

[13] S. Costantini. ACE: a flexible environment for complex event processing in logical agents.
In M. Baldoni, L. Baresi, and M. Dastani, editors, EMAS-15, Revised Selected Papers,
volume 9318 of LNCS. Springer, 2015.

[14] S. Costantini. Knowledge acquisition via non-monotonic reasoning in distributed hetero-
geneous environments. In M. Truszczyński, G. Ianni, and F. Calimeri, editors, Proc. of
LPNMR-13, volume 9345 of LNCS. Springer, 2015.

69

[15] S. Costantini and G. De Gasperis. Exchanging data and ontological definitions in multi-
agent-contexts systems. In A. Paschke, P. Fodor, A. Giurca, and T. Kliegr, editors, Proc. of
RuleML 2015 Challenge, CEUR Workshop Proceedings. CEUR-WS.org, 2015.

[16] S. Costantini and A. Formisano. Modeling preferences and conditional preferences on
resource consumption and production in ASP. Journal of of Algorithms in Cognition, In-
formatics and Logic, 64(1), 2009.

[17] S. Costantini and A. Formisano. Answer set programming with resources. Journal of Logic
and Computation, 20(2):533–571, 2010.

[18] S. Costantini and A. Formisano. RASP and ASP as a fragment of linear logic. Journal of
Applied Non-Classical Logics, 23(1-2):49–74, 2013.

[19] S. Costantini, A. Formisano, and D. Petturiti. Extending and implementing RASP. Fundam.
Inform., 105(1-2):1–33, 2010.

[20] S. Costantini and A. Tocchio. A logic programming language for multi-agent systems. In
Proc. of JELIA-02, volume 2424 of LNAI. Springer, 2002.

[21] S. Costantini and A. Tocchio. The DALI logic programming agent-oriented language. In
Proc. of JELIA-04, volume 3229 of LNAI. Springer, 2004.

[22] A. Dal Palù, A. Dovier, E. Pontelli, and G. Rossi. GASP: answer set programming with
lazy grounding. Fundam. Inform., 96(3):297–322, 2009.

[23] M. Dao-Tran, T. Eiter, M. Fink, and T. Krennwallner. Distributed evaluation of nonmono-
tonic multi-context systems. JAIR, 52:543–600, 2015.

[24] M. Dastani, M. B. van Riemsdijk, and J. C. Meyer. Programming multi-agent systems in
3APL. In R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, editors, Multi-
Agent Programming, volume 15 of Multiagent Systems, Artificial Societies, and Simulated
Organizations, pages 39–67. Springer, 2005.

[25] J. Delgrande, T. Schaub, H. Tompits, and K. Wang. A classification and survey of pref-
erence handling approaches in nonmonotonic reasoning. Computational Intelligence,
20(12):308–334, 2004.

[26] A. Dovier, A. Formisano, E. Pontelli, and F. Vella. A GPU implementation of the ASP
computation. In Proc. of PADL 2016, volume 9585 of LNCS, pages 30–47. Springer, 2016.

[27] M. Fisher. MetateM: The story so far. In R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-
Seghrouchni, editors, PROMAS, volume 3862 of LNCS, pages 3–22. Springer, 2005.

[28] M. Gebser, R. Kaminski, B. Kaufmann, J. Romero, and T. Schaub. Progress in clasp se-
ries 3. In M. Truszczyński, G. Ianni, and F. Calimeri, editors, Proc. of LPNMR-15, volume
9345 of LNCS, pages 368–383. Springer, 2015.

[29] M. Gelfond. Answer sets. In Handbook of Knowledge Representation. Elsevier, 2007.
[30] K. V. Hindriks, W. van der Hoek, and J. C. Meyer. GOAL agents instantiate intention logic.

In A. Artikis, R. Craven, N. K. Cicekli, B. Sadighi, and K. Stathis, editors, Logic Programs,
Norms and Action, volume 7360 of LNCS, pages 196–219. Springer, 2012.

[31] G. Liu, T. Janhunen, and I. Niemelä. Answer set programming via mixed integer program-
ming. In Proc. of KR 2012, 2012.

[32] M. Maratea, L. Pulina, and F. Ricca. A multi-engine approach to answer-set programming.
TPLP, 14(6):841–868, 2014.

[33] P. Naumov and J. Tao. Budget-constrained knowledge in multiagent systems. In G. Weiss,
P. Yolum, R. H. Bordini, and E. Elkind, editors, Proc. of AAMAS 2015, pages 219–226.
ACM, 2015.

[34] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model
semantics. Artif. Intell., 138(1-2):181–234, 2002.

[35] Web-references. Some ASP solvers. Clasp: potassco.sourceforge.net; Cmod-
els: www.cs.utexas.edu/users/tag/cmodels; DLV: www.dlvsystem.com;
Smodels: www.tcs.hut.fi/Software/smodels.

70

Monitoring Patients with Hypoglycemia
using Self-Adaptive Protocol-Driven Agents:

a Case Study

Angelo Ferrando, Davide Ancona and Viviana Mascardi

1DIBRIS, University of Genova, Italy
angelo.ferrando@dibris.unige.it, davide.ancona@unige.it,

viviana.mascardi@unige.it

Abstract. Trace expressions are a compact and expressive formalism,
originating from our previous research on global types and constrained
global types, for specifying complex patterns of actions. Global types
were initially devised for runtime verification of agent interactions in
multiagent systems and have been successfully employed to model real
protocols and to generate monitors for the Jason and JADE platforms.
Recently, their extension with constraints (constrained global types) has
been exploited to model interaction protocols which can drive the agents’
behavior, leading to “protocol-driven agents” whose procedural knowl-
edge is given by the protocol, and whose behavior results from the pro-
tocol interpretation. In this paper we discuss how we can model medical
protocols as trace expressions in an e-Health scenario. For this purpose,
we have extended our previous work on protocol-driven agents by allow-
ing agents to be guided by patterns of actions specified as trace expres-
sions instead of constrained global types, and by allowing events in the
trace expression to be of any kind instead of communicative ones only.

Key words: Trace expressions, Protocol-Driven Agents, e-Health pro-
tocol, Protocol consistency, Hypoglycemia in newborns, Patient moni-
toring

1 Introduction and Motivation

The demographic changes of our societies are causing an explosion of care re-
quests and, as a consequence, of the healthcare expenses.

Care requests for minor problems that could be addressed without the direct
intervention of the doctor divert the healthcare resources from more serious
situations. One possible solution to this problem, addressed since the beginning
of the millennium, is Remote Patient Monitoring (RPM, [7]) which consists in
the remote and distributed monitoring of a specific category of patients in order
to limit the number of visits to doctors and hospitals.

Health telematics can play a major role in improving the lives of patients [13],
particularly in the weaker sections of the society including disabled, elderly and
chronically ill patients [23]. Mobile health-monitoring devices offer great help for

71

such patients who may afford good healthcare without having to regularly visit
their doctor. These technologies bring potential benefits to both the patient and
the doctor; doctors can focus on priority tasks by saving time normally spent
with consulting chronically ill patients, and patients can be properly looked
after whilst remaining in their environment without having to make tiring and
time-consuming visits.

From a technological point of view, RPM requires a low level physical infras-
tructure made up of sensors and a software middleware monitoring the sensors
output and implementing rules for warning either the patient or the doctor, or
both, if the pattern of perceived data diverges from the “normal” pattern for
that specific patient. In order to achieve its goals, the middleware should:

1. manage data coming from decentralized and heterogeneous sensors;
2. dynamically plug and remove sensors and other components;
3. be adaptive to changes taking place in the environment and in the care

protocols that must be adopted;
4. interact with the human beings involved in the RPM process;
5. be fault tolerant.

A multiagent system with one agent in charge for each patient and one for
each doctor involved in the RPM process seems a very natural choice to satisfy
all these requirements, due to the MAS intrinsic structure where each agent has
incomplete information or capabilities for solving the problem, there is no global
system control, data is decentralized, computation is asynchronous, the system
is open and highly dynamic. Consistently with a holonic approach to MAS en-
gineering and development [18], the agent in charge of the patient (Patient’s
Agent, PA in the sequel) might be a MAS as well, with one agent in charge for
each sensor, one agent in charge for the user interface, one agent in charge for
the identification of threats based on sensory input, and so on.

The PA should monitor the patient’s health dynamics by verifying that it
follows a known “protocol”, should implement those actions foreseen by the
protocol (for example, “if the blood pressure is below a given threshold, tell the
patient to sit down for 10 minutes, switch the saturation sensor on, and increase
the heartbeat monitoring frequency”), and should quickly identify deviations
from the followed protocol. Since the protocol guiding the patient’s treatment can
change over time, the PA should be able to dynamically move from one protocol
to another, upon request of some trusted entity like the doctor. This protocol
switch might take place also when sensory input shows a critical situation and
some “higher severity” protocol must be immediately adopted. To summarize,
the PA should be driven by the protocol and should be able to adapt to new
situations by changing the followed protocol when needed.

In our recent research [2] we designed and implemented a framework for
protocol-driven self-adaptive agents, where agents are characterized by one in-
teraction protocol specified using constrained global types [1, 4] and by three
mandatory components, the knowledge base, the message queue and the envi-
ronment’s representation, that should be directly implemented in the underlying
agent framework. Being protocol-driven means that the agent behaves according

72

to a given protocol. In each time instant, the protocol-driven agent can make
only those internal choices which are allowed by the protocol in the current state.
In case of events which depend on external choices, the agent can only verify if
the event that took place is compliant with the protocol and act consequently.
We do not generate any agent code into any agent-oriented programming lan-
guage. The protocol specification is interpreted and this gives the flexibility that
meta-programming ensures, demonstrated for example by the easiness in imple-
menting protocol switch: protocols can be exchanged and modified at run-time,
being first class entities.

In this paper we extend that framework by allowing protocols to involve
events of any kind and not just communicative ones. The extended framework
is made more usable by allowing protocols to be expressed using “trace expres-
sions” [5]. We show how the extended framework can be profitably adopted to
specify medical protocols and to monitor them. We believe that our framework,
running on top of JADE and Jason, can serve as the basis for implementing the
RPM software middleware. The motivating scenario that we consider is that of
newborns who may suffer from hypoglycemia and the protocols we have imple-
mented are based on medical literature [21].

The paper is organized in the following way: Section 2 discusses the related
work, Section 3 introduces the background knowledge for understanding the
protocol modeling and the experiments presented in Section 4, and Section 5
concludes.

2 Related work

In the last years, the exploitation of multiagent systems in the e-Health scenario
has become more and more widespread, as discussed for example in [9]. E-Health
systems pose many challenges and requirements, such as:

– context and location awareness are to be smoothly integrated, i.e., the access
and the visualization of health-related information always depends on the
overall contexts of the patient and of the user [12],

– fault-tolerance, reliability, security and privacy-awareness are a must in order
to accommodate the strict requirements of all healthcare applications,

– effective mobile devices are to be used to provide access to relevant health-
related information independently of the current physical location and phys-
ical condition of the user, and

– unobtrusive sensor technology is needed to gather the physiological informa-
tion from the patient without hampering her daily life.

All mentioned requirements immediately recall the characterizing features of
multiagent systems and it comes with no surprise that many ubiquitous and
pervasive e-Health systems are designed and realized using multiagent abstrac-
tions and technologies [6, 19, 24].

According to [16], multiagent systems in the e-Health context are used in the
following categories of applications: assistive living ; diagnosis; physical moni-
toring ; and smart-emergency. The scenario we take under consideration in this

73

paper falls in the third category, where the aim is the continuous monitoring of
patients at home [20].

In [13], a system architecture consisting in a Java-based agent for each human
role (e.g. doctors, patients) is presented. Within the framework, agents reside
in three areas: the patient’s mobile device (e.g. smart phone or PDA with In-
ternet connectivity); the healthcare personnel’s mobile device (e.g. for nurses or
paramedics); and the mobile and static servers (which may be a wireless con-
nected notebook or an enterprise server computer). Our work is close to that
approach since we have one protocol-driven agent for each human role as well.

A framework for representing in formal terms how clinical guidelines1 are
realized through the actions of individuals organized into teams is presented in
[25]. The authors emphasize that the flexibility to deviate from the guideline
recommendations is indispensable if we are to build workflow systems that will
be accepted by the medical community. Even if the aim of our work is different
from that discussed in [25], they share some ideas, in particular regarding the
reuse of plans (which, in our approach, are protocols), the team based definition
(“global protocol definition” in our approach), and the flexibility of changing
protocol at runtime.

In [11, 14] the authors describe the GPROVE framework for specifying medi-
cal guidelines2 in a visual way and for verifying the conformance of the guideline
execution w.r.t. the specification. Except for the part regarding the visual repre-
sentation of guidelines, that work is very close to ours, in particular as far as the
verification that generated events do not lead to discrepancies with the models
is concerned. The most relevant difference is when verification is performed: in
[11, 14] the verification is performed on a log file generated during the execution
(a posteriori). In our work it is done at runtime: as soon as an event relevant
for the application is intercepted, the agent interpreter verifies if it is compliant
with the protocol and selects the most suitable action to take, according to the
verification outcome and to the selection and reaction strategies that the agent
implements.

Another work similar to ours is [22] where the SUAP project, a MAS to sup-
port and monitor prenatal care, is presented. SUAP manages electronic health-
care records of pregnant women; models, monitors and provides advice on pre-
natal protocols; and models a simple referencing protocol based on pregnancy
risks. In that work there are protocol agents which monitor data related to ap-
pointments and exam results to identify situations in which protocols must be
applied (protocols are defined by a set of rules). In [22] protocols can not change
during the execution: this represents the main different of that work w.r.t. ours.

As discussed in [17], multimedia delivery in e-Health systems is character-
ized by a wide spectrum of dynamically varying Quality of Service (QoS) re-
quirements which must be negotiated, re-negotiated and managed in response

1 Clinical guidelines are special types of plans realized by collective agents.
2 Medical guidelines are clinical behavior recommendations used to help and support

physicians in the definition of the most appropriate diagnosis and/or therapy within
determinate clinical circumstances.

74

to changing network and end-system conditions, or to new expectations from the
human user. Thus in an e-Health context, it is precisely this (re)negotiation and
dynamic management of applications QoS that emphasizes the need for adapt-
able protocols. It is therefore clear that any new solution, which attempts to ef-
ficiently deal with the problem of e-Health QoS provisioning, must be adaptive.
Even if the work discussed in [17] is about the QoS context, it allows focusing on
a real problem that all e-Health systems have to contend, which is the versatility
and the ability to change quickly. Our framework can tackle the QoS problem,
as each agent inside the system is able to change its protocol as a consequence of
a protocol switch request sent by a privileged agent; in this way, we can provide
the correct protocol to follow in each situation: the protocol switch derives from
the observation of the current state of the system.

3 Self-Adaptive Protocol-Driven Agents

In [2] we presented a framework for implementing protocol-driven agents whose
internal architecture is depicted in Figure 1.

Fig. 1. Architecture of a protocol-driven agent.

In this section we summarize that work and we present some extensions which
make the framework more general and flexible, consistently with the extensions
to the protocol formalism described in [5]. In [2], in fact, the protocol could
involve communicative actions only and hence could be used to drive (and, at
the same time, to monitor) the communicative behavior of the agents. In this
paper we move a step forward, changing the framework implementation to cope
with protocols where any kind of perceived events can be modeled.

Being protocol-driven means that the agent behaves according to a given
protocol, or, more in general, a given “pattern of events and actions”. As already
introduced in Section 1, the protocol-driven agent can only make those internal

75

choices which are allowed by the protocol in the current state, and – in case of
perceived events – it can only verify if the event is compliant with the protocol.
This architecture supports a combined approach to correct behavior generation
(when the choice of what to do is up to the agent) and runtime monitoring (when
the choice of what to do is made by the agent environment, and the agent must
verify that it is protocol-compliant).

For supporting a protocol-driven approach to agent programming, a formal-
ism for expressing protocols must exist together with a generate function for
identifying the allowed actions for moving from the current state of the protocol
to the next one. What differentiates the behavior of each agent are the select
policy to select the action to perform among the allowed ones, and the react
policy to react to perceived events. Two more policies must be defined to state
how to manage unexpected events and which cleanup actions to perform before
switching from the currently executing protocol to the new one. Protocol switch
is one of the major features of our approach, allowing agents to self-adapt to new
situations by changing the current protocol upon reception of “switch requests”.
Those agents that have the power to cause a protocol switch must be explicitly
stated by the agent and may change over time. Each agent can change the cur-
rently executing protocol by requesting a protocol switch to itself. Each agent Ag
is also able to project a global description of a protocol involving many agents
onto a local version by keeping only events that involve Ag itself. If a description
of the global protocol that all the agents in the MAS must respect exists, the
local protocol for each agent can be automatically obtained from the global one.
This allows the whole MAS to respect the global protocol by construction, as the
local versions are obtained from the global one by projection, and are consistent
with it.

Trace expressions. Trace expressions are a specification formalism ex-
pressly designed for runtime verification; they are an evolution of global types
[4] and have been continuously refined and consolidated during the last 4 years
[1, 3, 5, 15]. Trace expressions build on top of the “event” notion. An event may
either be a communicative event, like in [2], or any other event which may take
place in the environment and that the agent can perceive.
Events. In the following we denote by E a fixed universe of events. An event trace
over E is a possibly infinite sequence of events in E. A trace expression over E

denotes a set of event traces over E.
Event types. To be more general, trace expressions are built on top of event types
(chosen from a set ET), rather than of single events; an event type denotes a
subset of E and can be expressed by means of the has type predicate. An example
is provided in Section 4.
Trace expressions. A trace expression τ represents a set of possibly infinite event
traces and is defined on top of the following operators:

– ε (empty trace), denoting the singleton set {ε} containing the empty event
trace ε (the empty trace is represented by the lambda symbol in the actual
Jason code).

76

– ϑ:τ (prefix), denoting the set of all traces whose first event e matches the
event type ϑ (e ∈ ϑ), and the remaining part is a trace of τ (: symbol in the
code).

– τ1·τ2 (concatenation), denoting the set of all traces obtained by concatenat-
ing the traces of τ1 with those of τ2 (* symbol).

– τ1∧τ2 (intersection), denoting the intersection of the traces of τ1 and τ2 (/\
symbol).

– τ1∨τ2 (union), denoting the union of the traces of τ1 and τ2 (\/ symbol).
– τ1|τ2 (shuffle), denoting the set obtained by shuffling the traces in τ1 with

the traces in τ2 (| symbol).

To support recursion without introducing an explicit construct, trace expres-
sions are regular (a.k.a. rational or cyclic) terms and can be represented by a
finite set of syntactic equations, as happens, for instance, in most modern Prolog
implementations where unification supports cyclic terms.

As an example, T = ϑ:T represents the infinite but regular term ϑ:ϑ:ϑ:ϑ:
The lack of a base case for this recursive definition is not a problem, as trace
expressions are interpreted in a coinductive way in order to represent infinite
traces of events like this one, besides finite ones.

The semantics of trace expressions is specified by the transition relation δ ⊆
T × E× T, where T denotes the set of trace expressions. As it is customary, we
write τ1

e→ τ2 to mean (τ1, e, τ2) ∈ δ. If the trace expression τ1 specifies the
current valid state of the system, then an event e is considered valid iff there
exists a transition τ1

e→ τ2; in such a case, τ2 will specify the next valid state of
the system after event e. Figure 2 defines the rules for the transition function
(not all the rules are shown for space constraints; in particular, or and shuffle
rules have a symmetric or-r and shuffle-r version where τ2 moves, instead of τ1).

(prefix)
ϑ:τ

e→ τ
e∈ϑ (or-l)

τ1
e→ τ ′1

τ1∨τ2 e→ τ ′1
(and)

τ1
e→ τ ′1 τ2

e→ τ ′2

τ1∧τ2 e→ τ ′1∧τ ′2

(shuffle-l)
τ1

e→ τ ′1

τ1|τ2 e→ τ ′1|τ2
(cat-l)

τ1
e→ τ ′1

τ1·τ2 e→ τ ′1·τ2
(cat-r)

τ2
e→ τ ′2

τ1·τ2 e→ τ ′2
ε(τ1)

Fig. 2. Operational semantics of trace expressions. The ε(τ) side condition means that
τ can move into the empty trace expression.

Template trace expressions. In order to write complex protocols in a
compact and readable way, in [15] we extended our previous work by introducing
templates which allow parameters inside the protocol definition. In this section
we introduce template trace expressions which extend the notion of template
global types.

Template trace expressions are a “meta-formalism”: they must be applied
to some arguments in order to obtain “normal” trace expressions. Parameters

77

are present only in the template trace expression definition: when template trace
expression are used either for runtime verification or for protocol driven behavior
generation, all terms must be ground.

Let us consider the following template trace expressions, modeling infinite
loops of request reception and management, which must be composed using the
shuffle (|) operator as many times as the number of values over which var(1)

will vary:

SERVERT = receive_request(var(1)): (serve_request(var(1)): SERVERT),

SERVER = finite_composition(|, SERVERT, [var(1)])

A template trace expression must be “applied” in order to turn into a normal
trace expression, as shown in the code fragment below:

..., SERVER = finite_composition(|, SERVERT, [var(1)]),

apply(SERVER,[t(var(1),[client1,client2,client3])],INSTANTIATEDSERVER), ...

The apply predicate instantiates the SERVER protocol unifying its instantiation
with the INSTANTIATEDSERVER variable, whose actual value will become:

SERVER1 = receive_request(client1):(serve_request(client1):SERVER1),

SERVER2 = receive_request(client2):(serve_request(client2):SERVER2),

SERVER3 = receive_request(client3):(serve_request(client3):SERVER3),

INSTANTIATEDSERVER = SERVER1|(SERVER2|SERVER3)

The value associated with INSTANTIATEDSERVER is a ground trace expression
which can be projected and used for runtime monitoring and protocol-driven
behavior.

The great advantage of using template trace expressions is that they are more
compact and easy to design and understand than their “unfolding”, and that
the set over which the variables range can be decided at runtime, hence allowing
the agents to implement a limited form of dynamic protocol generation.

Implementation details. With respect to the implementation described in
[2], we made minor changes to the protocol-driven agent interpreter and to the
project function to cope with the presence of generic events in the protocol,
instead of communicative events only. The new implementation of our protocol-
driven agents runs on top of both Jason [10] and JADE [8]. The agent interpreter
is driven by the δ transition function described before and is implemented in
Prolog. Since Jason can directly integrate Prolog code, the interpreter has been
easily embedded into Jason agents. As far as JADE is concerned, we used a
bidirectional Java-Prolog interface to make JADE agents behave according to
Prolog rules.

The transition function is implemented by Prolog clauses which are in a one-
to-one correspondence with the δ transition rules, for a total of about 20 LOC
(Lines Of Code). The projection algorithm amounts to 60 lines of Prolog code,
and the management of templates and their application required less than 200
LOC. Besides these Prolog predicates which are independent of the underlying
framework, we had to develop some ad-hoc code both for JADE and for Jason,
for linking the interpreter code with the agents behavior. In both cases, the
required LOCs were less than 150.

78

4 Modeling Medical Protocols for Hypoglycemia in the
Newborns

In the scenario we address as a case study, we have many doctors and many
patients (newborns suffering from hypoglycemia). Each human being involved in
the scenario, namely the doctors and the newborns, is associated with a protocol-
driven agent. We assume that each baby can be equipped with sensors able to
change the protocol-driven agent’s knowledge base after perception of sensory
input such as temperature, heartbeat, pressure, O2 saturation, movement, and so
on. For example, if the patient has tremors, the movement sensor will update
the knowledge base of the protocol-driven agent with information about the
perceived tremors; this change in the agent knowledge base will “fire” a move
into a new protocol state where the successive foreseen events are those which
are normally expected when the newborn has tremors. If the perceived event is
instead an exceptional one and raises an emergency, a protocol switch might take
place for allowing the agent to abandon the normal protocol it is following, and
adopt an exceptional one suitable for managing the exceptional event. Otherwise,
if the event is unknown, the agent will start following its own unexpected events
policy. Event perception may cause the agent to perform other actions, defined
by its react policy. Besides defining which events are expected in a given state,
the protocol also asserts which actions are allowed in a given state. If the allowed
actions are more than one, the agent will select one among them by using its
select policy3.

The protocol-driven agent associated with newborns might need to commu-
nicate something to the patient or, to be more precise, with the parents of the
patient. To achieve this goal it may print some message onto a screen positioned
near to the newborn. The parents can follow the monitoring process and the
intervention instructions like, for example, the request to inject a dose of glucose
solution. Hypoglycemia management does not require a constant presence of a
doctor but needs an ongoing monitoring of some vital parameters, falling in the
“patient monitoring at home” scenario discussed in Section 1.

For sake of readability, in the sequel we will consider the situation where
there are 1 doctor and N patients (Figure 3), even if the protocols can be easily
generalized to M doctors.

The doctor’s agent is driven by a single protocol while the patients’ agents
may be driven, in each time instant, by one of the three protocols below:

– standard protocol, which models the situation where the newborn has no
symptoms of the disease;

– severity 1 protocol, associated with the lowest severity level of the disease;
– severity 2 protocol, associated with the highest severity level of the disease.

3 In our prototypical implementation, these policies are the default ones: unexpected
events are discarded, no reaction is associated with perceived events besides that
hard-wired into the protocol, and selection selects the first action returned by the
generate function.

79

Fig. 3. Doctor-Patients architecture.

Figure 4 shows the cases when the agent associated with the newborn can
continue its execution, and when it must perform a protocol switch. Protocol
switches are fired by reception of a switch request from a trusted agent. Each
agent may send a switch request to itself upon perception of an exceptional
event, and this allows us to model in a neat and simple way event perception as
a trigger of a protocol switch. This feature allows us to write protocols depending
for example on

– a change in the agent’s knowledge base (caused for instance by an event
generated by a sensor), or

– a change in the environment, perceived by all the agents immersed in it.

Doctor protocol. The protocol DP of the agent associated with the doctor is
conveniently represented by a template trace expression (the trace expression
associated with the DoctorPatientProtocol logical variable, which will be repli-
cated as many times as necessary during the application stage) consisting of the
union (\/ operator) of three sub-protocols describing three mutually exclusive
situations that the agent can experience. The event types appearing in the pro-
tocol may be communicative ones. In this case, for sake of readability, we prefix
their name by msg. The first argument of communicative event types will be
instantiated with the sender of the message and the second with the receiver.
The agent associated with the doctor has the power to request a protocol switch
to the patient’s agent. A protocol switch in the patient may take place also in

80

Fig. 4. Patient’s protocols execution.

response to sensory input, as described later. A switch request is modeled by the
switch request(Sender,Receiver,NewProtocolIdentifier) event type.

– Ok sub-protocol: if the doctor agent receives a message reporting that the
glucose level in the blood of its patient is ok, then things are going on in
the right way: the agent moves to the DoctorPatientProtocol state again (:
operator, modeling sequence) and continues to monitor;

– SevereProblem sub-protocol: if the doctor agent receives a message report-
ing that the glucose level in the blood of its patient is too low, then it
sends a protocol switch request to the patient (switch request(var(doctor),

var(patient), severity2) bringing the patient’s protocol to severity2) and
continues to monitor (namely, it moves to the DoctorPatientProtocol again
thanks to the concatenation operator, *);

– SwitchedToSeverity1 sub-protocol: if the doctor agent receives a message
reporting that the patient has switched its protocol to severity1 (commu-
nicative event type msg switched to severity1(var(patient),var(doctor))),
then the situation requires a more careful monitoring as it might change into
a severe health status:
• if the agent either receives a message reporting that the patient has

tremors or she is irritable (TremorsOrIrritability sub-protocol), then it

81

either sends a protocol switch request bringing the patient’s protocol to
severity2, or it asks the patient’s agent to continue to monitor without
switching to the severity2 protocol;

• if, before or after the messages related to either tremors or irritability
(| models the occurrence of events in any order), the doctor’s agent
receives a message from the patient (or from his parents) reporting an
intervention request (InterventionRequest sub-protocol), then the agent
communicates this request to the doctor using the screen.

In both cases, the agent can move to the “standard” monitoring state mod-
eled by the trace expression associated with DoctorPatientProtocol.

trace_expr_template(doctor_protocol, DP) :-

DoctorPatientProtocol = Ok \/ SevereProblem \/ SwitchedToSeverity1,

Ok = msg_ok_glucose(var(patient),var(doctor)):DoctorPatientProtocol,

SevereProblem =

msg_too_low_glucose(var(patient),var(doctor)):SwitchToSeverity2,

SwitchedToSeverity1 = (msg_switched_to_severity1(var(patient),var(doctor))

:(TremorsOrIrritability|InterventionRequest))*DoctorPatientProtocol,

SwitchToSeverity2 =

(switch_request(var(doctor),var(patient),severity2) \/

msg_continue_monitor(var(doctor),var(patient)))*DoctorPatientProtocol,

TremorsOrIrritability =

(msg_tremors(var(patient),var(doctor)):lambda \/

msg_irritability(var(patient),var(doctor)):lambda)*SwitchToSeverity2,

InterventionRequest =

msg_intervention_request(var(patient),var(doctor)):

print_intervention_request(var(patient),var(interface)):lambda,

DP = finite_composition(|, DoctorPatientProtocol,

[var(patient),var(doctor),var(interface)]).

During the application stage, var(patient) will vary on the doctor’s patients
(for example [patient1, patient2, patient3]), var(doctor) varies on the doc-
tors involved in the monitoring (for example, doctor1 if we want to keep the
scenario as simple as possible) and var(interface) varies on the artifacts in
the MAS that can act as an interface between the humans involved in the loop
and the system. For example, we might decide that messages that the patients
must see are printed on a screen named screen. We could also send messages
to more than one artifact, for example to [local-screen, doctor-mobile-phone,

father-mobile-phone, mother-email]4. The code fragment for the instantiation
of the template trace expression above is

apply(T, [t(var(patient), [patient1, patient2, patient3]),

t(var(doctor), [doctor1]),

t(var(interface), [screen2])],

INSTANTIATEDPROTOCOL)

4 In the Jason implementation discussed later on, we modeled these artifacts as
“dumb” agents which can receive FIPA-ACL messages. This was an easy and quick
way to build a working prototype including all the relevant MAS components, with-
out needing to actually implement Java classes for the artifacts in the system.

82

Patient standard protocol. The StandardProtocol trace expression models three
situations, corresponding to three sub-protocols:

– Ok sub-protocol, modeling the normal situation where the perceived glucose
level is ok (event type ok glucose(var(patient)), representing a perception
event); the doctor is informed (msg ok glucose(var(patient),var(doctor)))
and the protocol moves to the situation modeled by StandardProtocol.

– TooLowGlucose sub-protocol: the perceived event has type too low gluco-

se(var(patient)); the agent in charge of the patient informs the doctor
(msg too low glucose(var(patient),var(doctor))) and then it receives either
a message from the doctor saying to continue to monitor, or a protocol switch
request.

– OtherSymptoms sub-protocol: in case the patient has tremors or she is irritable
(perception event types irritability(var(patient)) and tremors(var(pa-

tient))), then a switch of the patient agent to the severity1 protocol is
required: the agent informs the doctor and then sends a switch request
to itself; if the symptoms are convulsions, apnea, or irregular breathing,
then the patient agents switches to the severity2 protocol by sending the
switch request(var(patient),var(patient),severity2) message to itself.

trace_expr_template(standard_protocol, Standard) :-

StandardProtocol = Ok \/ TooLowGlucose \/ OtherSymptoms,

Ok = ok_glucose(var(patient)):

msg_ok_glucose(var(patient),var(doctor)):StandardProtocol,

TooLowGlucose = too_low_glucose(var(patient)):

msg_too_low_glucose(var(patient),var(doctor)):

(msg_continue_monitor(var(doctor),var(patient)):StandardProtocol)

\/ switch_request(var(doctor),var(patient),severity2):lambda)),

SwitchToSeverity1 =

msg_switched_to_severity1(var(patient),var(doctor)):

switch_request(var(patient),var(patient),severity1):

lambda,

LightSymptoms =

((irritability(var(patient)):lambda) \/ (tremors(var(patient)):lambda))

* SwitchToSeverity1,

SevereSymptoms =

((convulsions(var(patient)):lambda) \/

(apnea(var(patient)):lambda) \/

(irregular_breathing(var(patient)):lambda)) *

(switch_request(var(patient),var(patient),severity2):lambda),

OtherSymptoms = LightSymptoms \/ SevereSymptoms,

Standard = finite_composition(|,StandardProtocol,

[var(patient),var(doctor)]).

To make an example of how an event type can be defined, the has type

definition of too low glucose(Patient) is

has_type(percept(Patient,plasma_level_glucose(PlasmaLevel)),

too_low_glucose(Patient)) :-

83

hours_after_birth(Patient,HoursBirth),

((HoursBirth >= 1, HoursBirth <= 2, PlasmaLevel < 28);

(HoursBirth >= 3, HoursBirth <= 47, PlasmaLevel < 40);

(HoursBirth >= 48, HoursBirth <= 72, PlasmaLevel < 48)).

which associates a perception of the glucose level in the plasma to the too low-

glucose(Patient) event type. The expected plasma levels given the hours from
the baby’s birth are based on medical literature.

For space constraints we do not show the severity1 protocol. A fragment of
the severity2 protocol is shown below and the most relevant aspect is that, if
during the execution of this protocol a low level of glucose is perceived, then
a message is prompted on the screen associated with the patient, asking for
an intravenous injection of glucose solution, and the intervention of the doc-
tor is requested. Since the patient is following a severity2 protocol, this means
that she is in an almost critical situation. For this reason, even in case the glu-
cose level is ok, the high-frequency and high-severity monitoring continues to go
on (NormalGlucose = ok glucose(var(patient)):Severity2Protocol). When the
doctor will be confident enough that the most critical period has been over-
come, she will explicitly send a protocol switch request to the patient, to roll
back to the normal or lower severity protocol (not shown for space constraints).

trace_expr_template(severity2, T) :-

Severity2Protocol=

TooLowGlucose \/ NormalGlucose,

NormalGlucose =

ok_glucose(var(patient)):Severity2Protocol,

TooLowGlucose =

too_low_glucose(var(patient)):

intravenous_inj_glucose_sol(var(patient), var(interface)):

CheckGlucoseAfterInjection,

..........

Implementation in Jason

The doctors’ and patients’ agents driven by the protocol introduced in the pre-
vious section have been implemented on top of Jason. We run tests with up to
10 patients and 3 doctors, as shown in Figure 5.

Figure 6 shows a portion of a run involving only one doctor and one patient,
to make it easier to follow the protocol evolution. The patient1 agent has just
received a protocol switch request from the doctor1 agent, due to a low glucose
level in the patient’s blood; it cannot manage it immediately, so it saves the
request. When it can implement the required protocol switch, patient1 has to
project the new protocol to follow (in this case the severity 2 protocol) onto itself.
The message “Instantiated protocol” is printed after the protocol projection and
switch have completed. After that, patient1 sends a message to the screen1 agent,
which simulates a user interface in this simplified scenario, that will print the
message: “An intravenous injection of a 10% glucose solution is necessary”; this
message will be read by the parents who will do the injection.

84

Fig. 5. Protocol execution in Jason: the MAS configuration is shown in the background.

Fig. 6. Protocol execution in Jason: protocol switch request.

We simulated different situations where different sensory input was perceived
by the patients’ sensors, hence changing the course of actions and reactions, in
order to test both our infrastructure and the protocols we have designed and
implemented.

5 Conclusions and Future Work

Trace expressions are a compact and expressive formalism suitable for modeling
protocols in multiagent systems and exploiting the protocol representation either
for driving the agents behavior, or for verifying it at runtime, or both.

In [5] we have formally compared trace expressions with Linear Temporal
Logic (LTL), a formalism widely adopted in runtime verification, and we have
proved that for the purpose of runtime verification, trace expressions are strictly

85

more expressive than LTL: trace expressions are able to specify context-free and
non context-free languages, while LTL is not.

In this paper we have presented an extension of our implemented framework
for protocol-driven agents, consisting in the integration of trace expressions for
protocol modeling and in the support to generic events in the protocol rather
than just communicative events. The use of generic events instead of interactive
actions only, allows developing more generic protocols which can model a wider
range of situations.

The aim of this work was to show the potential of trace expressions for the
specification of adaptive systems and the suitability of self-adaptive protocol-
driven agents, which may decide to change their behavior at run-time based on
the events they perceived, for safety-critical applications. In fact, all protocol-
driven agents are coherent with the global protocol(s) which characterize the
given domain and application, so their behavior is correct by construction. The
lack of compliance to the protocol(s) may be due to events which are outside the
agents control, namely events generated by the environment. Each agent must
implement a policy for dealing with unexpected events. In the hypoglycemia
scenario, the policy might be to warn immediately both the parents via the user
interface, and the doctor, and move into an “alarm” state.

Although the protocols discussed in this paper are simple enough to be spec-
ified using regular languages, the ability of trace expressions to specify context-
free and non context-free languages gives a great advantage over other widely
used formalisms, in any application domain where a high modeling expressive
power is required included the e-Health one.

The future developments of our work will be mainly devoted to study which
kind of properties of a protocol expressed using the trace expression formalism
can be verified statically. Static verification would be particularly relevant for
scenarios in the e-Health domain, where reliability is a main goal to achieve.

References

1. D. Ancona, M. Barbieri, and V. Mascardi. Constrained global types for dynamic
checking of protocol conformance in multi-agent systems. In Proc. of SAC ’13,
pages 1377–1379, 2013.

2. D. Ancona, D. Briola, A. Ferrando, and V. Mascardi. Global protocols as first
class entities for self-adaptive agents. In Proc. of AAMAS 2015, pages 1019–1029,
2015.

3. D. Ancona, D. Briola, A. Ferrando, and V. Mascardi. Runtime verification of fail-
uncontrolled and ambient intelligence systems: A uniform approach. Intelligenza
Artificiale, 9(2):131–148, 2015.

4. D. Ancona, S. Drossopoulou, and V. Mascardi. Automatic generation of self-
monitoring MASs from multiparty global session types in Jason. In Proc. of DALT
2012, volume 7784 of LNAI, pages 76–95. Springer, 2012.

5. D. Ancona, A. Ferrando, and V. Mascardi. Comparing trace expressions and linear
temporal logic for runtime verification. In Theory and Practice of Formal Methods,
volume 9660 of LNCS, pages 47–64. Springer, 2016.

86

6. R. Annicchiarico, U. Corts, and C. Urdiales. Agent Technology and e-Health
(Whitestein Series in Software Agent Technologies and Autonomic Computing).
1 edition, 2008.

7. E. A. Bayliss, J. F. Steiner, D. H. Fernald, L. A. Crane, and D. S. Main. Descrip-
tions of barriers to self-care by persons with comorbid chronic diseases. Annals of
Family Medicine, 1(1):15–21, 2003.

8. F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent Systems
with JADE. Wiley, 2007.

9. F. Bergenti and A. Poggi. Developing smart emergency applications with multi-
agent systems. IJEHMC, 1(4):1–13, 2010.

10. R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming Multi-Agent Sys-
tems in AgentSpeak Using Jason. John Wiley & Sons, 2007.

11. A. Bottrighi, F. Chesani, P. Mello, M. Montali, S. Montani, S. Storari, and P. Teren-
ziani. Analysis of the GLARE and GPROVE approaches to clinical guidelines. In
Knowledge Representation for Health-Care: Data, Processes and Guidelines, vol-
ume 5943 of LNCS, pages 76–87, 2009.

12. N. Bricon-Souf and C. R. Newman. Context awareness in health care: A review.
I. J. Medical Informatics, 76(1):2–12, 2007.

13. V. Chan, P. Ray, and N. Parameswaran. Mobile e-health monitoring: an agent-
based approach. IET Communications, 2:223–230(7), February 2008.

14. F. Chesani, P. D. Matteis, P. Mello, M. Montali, and S. Storari. A framework
for defining and verifying clinical guidelines: A case study on cancer screening. In
Proc. of ISMIS 2006, pages 338–343, 2006.

15. A. Ferrando. Parametric protocol-driven agents and their integration in JADE. In
Proc. of CILC 2015, 2015.

16. M. Furmankiewicz, A. So ltysik-Piorunkiewicz, and P. Ziuziański. Artificial in-
telligence and multi-agent software for e-health knowledge management system.
Informatyka Ekonomiczna – Business Informatics, 2(32):51–62, 2014.

17. G. Ghinea, G. D. Magoulas, and A. O. Frank. Intelligent protocol adaptation for
enhanced medical e-collaboration. In Proc. of the Int. Florida Artificial Intelligence
Research Society Conference 2003, pages 276–280, 2003.

18. B. Horling and V. Lesser. A survey of Multi-Agent organizational paradigms. The
Knowledge Engineering Review, 19(4):281–316, 2005.

19. D. Isern and A. Moreno. A systematic literature review of agents applied in health-
care. J. Medical Systems, 40(2):43:1–43:14, 2016.

20. S. Meystre. The current state of telemonitoring: a comment on the literature.
Telemedicine Journal & e-Health, 11(1):63–69, 2005.

21. K. A. M. Nancy Wight. Abm clinical protocol #1: Guidelines for blood glucose
monitoring and treatment of hypoglycemia in term and late-preterm neonates.
Breastfeeding Medicine, 1(3), 2006.

22. I. Nunes, R. Choren, C. Nunes, B. Fábri, F. Silva, G. R. de Carvalho, and C. J. P.
de Lucena. Supporting prenatal care in the public healthcare system in a newly
industrialized country. In Proc. of AAMAS 2010, pages 1723–1730, 2010.

23. M. Schwaibold, M. Gmelin, G. von Wagner, J. Schöchlin, and A. Bolz. Key factors
for personal health monitoring and diagnosis device. In Mobile Computing in
Medicine, volume 15 of LNI, pages 143–150. GI, 2002.

24. E. M. Shakshuki and M. Reid. Multi-agent system applications in healthcare:
Current technology and future roadmap. In Proc. of ANT 2015, volume 52 of
Procedia Computer Science, pages 252–261. Elsevier, 2015.

25. B. Smith, D. M. Pisanelli, A. Gangemi, and M. Stefanelli. Clinical guidelines as
plans - an ontological theory. In Methods of Information in Medicine, 2006.

87

Limitations and Divergences in Approaches for
Agent-Oriented Modelling and Programming

Artur Freitas, Rafael C. Cardoso, Renata Vieira, and Rafael H. Bordini

Postgraduate Programme in Computer Science, School of Informatics (FACIN)
Pontifical Catholic University of Rio Grande do Sul (PUCRS). Porto Alegre, RS - Brazil

{artur.freitas, rafael.caue}@acad.pucrs.br,
{renata.vieira,rafael.bordini}@pucrs.br

Abstract. This paper shares our experiences in applying two well-known method-
ologies that play different roles in agent-oriented software engineering: modelling
with Prometheus and programming with JaCaMo. First, we modelled a realistic
multi-agent scenario using Prometheus to support its design and specification.
Afterwards, JaCaMo was used as the development platform for programming
our case study. Then, we were able to compare the outcome of combining these
approaches, allowing us to identify some gaps, limitations and conceptual diver-
gences when such approaches are used together to engineer a complex case study.
This empirical study is our basis for discussing the lessons learned and for show-
ing the theoretical and practical aspects of applying these two traditional agent-
based approaches. Therefore, this paper highlights advantages and drawbacks of
using Prometheus and JaCaMo to design and implement a complex multi-agent
scenario, and how suitable is their integration for improving agent-oriented soft-
ware engineering.

Keywords: Agent-oriented software engineering, Prometheus, JaCaMo

1 Introduction

Producing software code for complex and highly detailed systems directly in program-
ming environments without first using any specification, modelling or design mecha-
nism can cause many problems. For example, without a proper modelling of the sys-
tem’s environment it can be difficult to find potential bugs when they eventually ap-
pear in the implementation, since they might be bugs that were introduced during
the design and specification of the system. These problems can cause further delay
in the development of complex MAS, which are already notoriously hard to debug,
mostly due to the lack of debugging support in MAS development platforms. Origi-
nally, methodologies for Agent-Oriented Software Engineering (AOSE) were aimed at
agent-oriented programming languages that were mostly concerned with programming
individual agents. Since then, programming abstractions covering the social and envi-
ronmental dimensions of Multi-Agent Systems (MAS) have emerged [2], and are re-
sulting in new MAS development platforms with multiple levels of abstractions. AOSE
methodologies though, are not following the same pace. Although traditional method-
ologies can be used with these new MAS development platforms, they may diverge in

88

several points due to their differences regarding abstraction levels, and, thus, it is im-
portant to be aware if such combination can be successfully used, and which are the
advantages, limitations and consequences of doing so. Therefore, our work discusses
how these AOSE approaches can complement each other and which are the implica-
tions of such combination, rather than using each one of them in isolation.

Agent-oriented methodologies and programming languages for engineering MAS
are often disjointed, resulting in limitations, gaps and conceptual divergences between
the modelling and programming phases. In this paper, we apply two agent technologies
in a complex case study in order to comparatively investigate the modelling and pro-
gramming approaches for MAS. The case study allows us to point out and discuss the
challenges we faced during this process, as well as possible ways to overcome them.
Our case study is the Multi-Agent Programming Contest of 20161, an annual competi-
tion carried out as an attempt to stimulate research in the area of MAS development and
programming. The performance of a particular system is determined through a series
of simulation rounds, where systems compete against each other. This year the scenario
consists of solving logistics problems in the realistic streets of cities, by buying, build-
ing, and delivering goods. First, Prometheus [6] is employed to specify our models,
which are, then, used to code the system in the JaCaMo [1] programming framework.
In other words, this work investigates the suitability of Prometheus for the specification
of agent systems considering that the codification will take place in JaCaMo. In such
context, it is important to be aware of divergences when these approaches are used in
the development of complex MAS. Therefore, on the light of our case study, we analyse
and discuss differences and problems (with possible solutions) between the combined
use of the Prometheus methodology with the JaCaMo framework. As result, we point
out lessons learned from using these technologies in combination.

This paper is structured as follows. Section 2 explains the basic concepts of the
two agent-oriented modelling and programming approaches investigated in this paper:
Prometheus and JaCaMo. Then, we describe the scenario and show our Prometheus
models and pieces of JaCaMo code in Section 3, which is followed with a discussion
about limitations, conceptual gaps, and possible solutions. Finally, Section 4 discusses
related work, and our final remarks are given in Section 5, along with an outline of
future research directions.

2 Background

The Prometheus methodology has been developed for over a number of years as a re-
sult of being used in the industry [3]. While Prometheus [6] is a methodology for mod-
elling intelligent agent systems, the Prometheus Design Tool (PDT) is a graphical tool
that follows the Prometheus methodology in order to build the design of MAS [8].
PDT started as a stand alone tool, but it is nowadays being developed as a plug-in for
Eclipse. Prometheus contains three phases: system specification, architectural design,
and detailed design. The system specification focuses on identifying basic system func-
tionalities, along with inputs (percepts), outputs (actions), and any important shared

1 https://multiagentcontest.org/

89

data sources. This phase defines what the system is intended to do. The architectural
design uses the outputs from the previous phase to determine the system’s agents and
how they will interact. Thus, it establishes the structure of the system being developed.
The detailed design looks at the internals of each agent and how it will accomplish its
tasks within the overall system, that is, it establishes the plans that the agents require in
order to achieve their goals.

JaCaMo [1] combines three separate technologies into a framework for MAS pro-
gramming that makes use of multiple levels of abstractions, enabling the development
of robust MAS. Each technology (Jason, CArtAgO, and Moise) was developed sepa-
rately for a number of years and are fairly established on their own when dealing with
their respective abstraction level. Jason is responsible for the agent level, it is an exten-
sion of the AgentSpeak language. Based on the BDI (Belief-Desire-Intention) model,
agents in Jason react to events in the system by executing actions on the environment,
according to the plans available in each agent’s plan library. CArtAgO is based on the
A&A (Agents and Artefacts) model, and deals with the environment level. Artefacts
are used to represent the environment, storing information about the environment as
observable properties and providing actions that can be executed through operations.
Agents focused on artefacts can obtain percepts from them and execute operations on
the artefacts. Moise handles the organisation level, enabling an explicit specification of
the organisation in a MAS. This level adds new elements to the MAS, such as roles,
groups, organisational goals, missions, and norms. Agents can adopt roles and com-
pose groups. Missions are defined to achieve organisation goals, and the behaviour of
the agents that adopt roles to execute these missions is guided by norms.

3 Modelling and Implementation of the Case Study

Our work uses PDT, a plugin for the Eclipse platform that adopts the graphical no-
tation depicted in Fig. 1. This image identifies the symbols used in PDT’s graphical
models, serving as a notation for many of the models presented throughout this paper.
Our case study is based on the multi-agent programming contest scenario of 2016. In
this scenario two teams of autonomous vehicles are controlled by agents, competing
against each other in order to accomplish logistic tasks in the streets of a realistic city.
Completing tasks rewards the team with money, and the team with the most money by
the end of the simulation is the winner. Tasks can be created by the environment or
by one of the agent teams. A task can require the acquisition, assembling, and trans-
portation of goods. In our simulations teams have four agents, with each agent having a
different type. These types define the agent’s speed, if they move by air or land, battery
charge, maximum load, and what tools they can use. The types of agents are: car, drone,
motorcycle, and truck. The map contains facilities of several types such as shops, ware-
houses, charging stations and storage facilities. Items can be bought, crafted, given to a
teammate, stored, delivered as part of a job completion, recovered from a storage facil-
ity, and dumped. These action may only happen at their respective locations/facilities.
Some overall characteristics assumed for our case study are given next. Each team is
composed of only collaborative agents. The two teams are competing with each other to
win money. The strategies for opponent teams are unknown (since we develop models

90

Fig. 1. Graphical notation of the Prometheus elements (obtained from the PDT in Eclipse)

and codes that correspond only to our team). It is assumed for our agents that they are
truthful, their communication is reliable and their knowledge is imperfect.

3.1 System Specific Design

In Prometheus, the specification usually starts with the analysis overview diagram,
which identifies actors, percepts, actions, and scenarios [6, 3]. Actors
are external entities that will use or interact in some way with the system. Actors can
be other software systems or humans. Percepts are the inputs to each scenario.
Actions are produced by the system for each scenario. Scenarios describe the
interaction and correspond to the main functionalities of the system. A scenario is
a sequence of structured steps where each step can be one of: percept, action,
goal, or (sub)scenario. Goals are defined as desires of agents and may trigger
the execution of plans.

Figure 2 shows the analysis overview diagram. When mapping Prometheus to Ja-
CaMo, Actors correspond to the artefacts of CArtAgO, and Actions can be seen as
the operations of artefacts. The round procedure scenario, which represents each
round of the simulation, models that agents interact with a server actor by receiving
the round start and round end perceptions. A round consists of a series of steps
in which agents receive the request action perception and then send an action
to the actor. We used a contract net protocol mechanism, based on the original design of
Smith [7], to distribute tasks among agents, as shown in the task announcement
procedure, bid procedure, and award procedure scenarios in Fig. 2. The
contract net was modelled using artefacts to control and mediate communication among
agents by taking advantage of the shared resources available in CArtAgO, instead of us-
ing the usual method of message passing, and thus, improving performance during exe-
cution. Since agents have a deadline to send an action during each step, performance is
an important feature in the strategy of any team. The task board is where tasks are
announced. Each announced task has a respective contract net board, where
agents make bids and the task is awarded to the best bid.

We observe the following limitations so far. In our case study, what is modelled
as Actors in Prometheus is translated to Artefacts in JaCaMo. However, there is not
any visual way to represent that an Actor, an Agent, or a Scenario instantiates an Ac-
tor. That is, none of these elements can connect directly with an Actor. In CArtAgO,
artefacts can be created by: (i) agents; (ii) other artefacts; or (iii) when the MAS starts

91

Fig. 2. Analysis overview diagram

its execution. We did not found any way to represent these things without having to
change the meta-model of Prometheus and/or PDT. When using CArtAgO, both agents
and artefacts can execute operations (i.e., actions). However, it is not possible to repre-
sent that an actor can execute an action in the Prometheus analysis overview diagram
(e.g., a connection from an actor to an action). This diagram allows us only to represent
that agents can execute actions, and that actors receive actions. To overcome this lim-
itation, a scenario must be created between these elements, so that the actor connects
with the scenario and the scenario connects with the action. Relations between two ac-
tors cannot be represented, thus, we cannot specify hierarchies among artefacts (e.g., to
define inheritances/specialisations of artefacts/actors). The same limitation is true for
hierarchies of agents, and hierarchies of roles. Another limitation is that agents cannot
connect directly with actors, so there is no way of establishing that an agent can create
an actor, or vice-versa. In CArtAgO, agents can only obtain perceptions and execute
operations over artefacts after successfully focusing on them, and agents can only focus
on artefacts if they are on the same workspace (localities where artefacts are situated).
We did not found out how to represent these access restrictions.

92

Fig. 3. System overview diagram

3.2 Architectural Design

The system overview diagram ties together the agents, events, and shared data objects
[6]. Agents perform actions, receive percepts, bring together roles, exchange
messages, and participate in protocols. Protocols define interactions between
agents in terms of the allowable sequences of messages passed between them and
the interactions with things outside the system (actors). Messages are sent and
received by agents in order to accomplish the various aims of the system. Roles
are intended as relatively small and easily specified chunks of agent functionality for
grouping goals into cohesive units.

The system overview diagram, as shown in Fig. 3, provides a general understanding
of how the system as a whole will function, and adds agents and protocols to the models.
It also relates them with the previously described actions and percepts, and adds new
ones if required. In our case, we have vehicle, initiator and bidder as agents.
The elements introduced here are propagated and detailed better in further phases of
Prometheus. Protocols and actors cannot be visually connected in any diagram (except
in the sequence diagrams, as shown in Fig. 4 and Fig. 5). When we define that an agent
participates in a protocol, this automatically propagates to the system overview diagram.

93

Fig. 4. Sequence diagrams of the round phase protocol

The same does not happen when it is defined that an actor participates in a protocol (for
example, such relation does not propagate to the analysis overview diagram).
It is not possible to define what triggers or initialises a protocol, as this information
cannot be included in any diagram. The very first thing in the protocol indicates that it
has begun, but it does not indicate the reason that made it start.

Percepts, actions, and actors can participate in protocol specifications, in addition to
messages and agents. In protocols, percepts (represented by >perception name<) orig-
inate from actors (represented by dashed rectangles) and go to agents (represented by
solid rectangles); and actions (represented by <action name>) always originate from
an agent and go to an actor. Figure 4 depicts the sequence diagram for the round
phase protocol and Fig. 5 illustrates the contract net protocol. Our contract net
protocol starts when an initiator agent performs an announce action in a task
board artefact. Then, the task board creates a contract net board arte-
fact, however Prometheus and PDT do not allow for such information to be included
in the diagram, and thus, it is not visually represented. Then, the contract net
board produces a task percept for bidders that will bid for it. The contract
net board controls the deadline and sends the end of bids percept to the
initiator, which will get bids and award the best offer (deadline is achieved
when all agents that are able to bid do so, or when a timeout is reached). In the end, the
bidder receives a winner percept indicating who won the task.

As we previously commented, it is not possible to connect two actors in the se-
quence diagram. This is needed to define, for example, that an actor creates another ac-
tor. In our case, task boards make instances of contract net boards when
an initiator announces a task. We already discussed the representation of actors’
instantiations when analysing limitations in the analysis overview diagram, and the
same observations apply to the sequence diagrams. Figure 6 shows (some parts of)
the contract net board CArtAgO artefact code. We made adaptations from the
contract net protocol artefacts that come with the CArtAgO package in order to use it in
our implementation. This artefact corresponds to the actor represented in Prometheus
using the same nomenclature. Its operations (bid and getBids) are traced to the
actions in Prometheus that previously appeared in several diagrams (Figures 2, 3,
and 5). The bid operation adds the bid received as parameter in a bid list if the state

94

Fig. 5. Sequence diagrams of the contract net protocol

of this contract net board is open. The getBids operation returns the bid
list after passing the guard condition that checks if the bidding window is closed.
Moreover, the observable properties of this CArtAgO artefact (defined in the init
method) are related to the percepts of Prometheus’ models. Some parts of the code
are omitted for simplicity and due to the lack of space. One example is the Bid class
(appears on lines 2, 13, 22), which is used to manage the bids and contains as attributes
an identification number and a value.

Our data coupling overview diagram is depicted in Figure 7. In Prometheus, the
data coupling diagram contains the roles (functionalities) and their relations to all
identified data (not only persistent data, but also data required by the functionali-
ties). Therefore, in our case study, we found that the data can come from two different
sources: (i) from the environment (more specifically, the artefacts); or (ii) in the form of
beliefs. In both cases, we found that, in this context, Prometheus presented conceptual
divergences regarding the data representation adopted in JaCaMo.

3.3 Detailed Design

The detailed design phase consists of a list of agent overview diagrams, one for each
agent has their own capability overview diagrams, one for each capability included in
the agent [3]. The agent overview diagram provides the top level view of the agent
internals [6]. It is similar in style to the system overview diagram, but instead of agents
within a system, it shows capabilities within an agent. Then, the capability overview
diagram goes even further, describing the internals of a single capability. At the bottom
level these will contain plans, with events providing the connections between plans, just
as they do between capabilities and agents. These diagrams are similar in style to the
system and agent overview diagrams, although plans are constrained to have a single
incoming (triggering) event.

Capabilities of agents are defined in terms of plans, events, and data
[6]. Capabilities are described by a capability descriptor which contains informa-
tion about its external interface – the events that are used as inputs, and the events that
are produced as inputs. The capabilities of an agent usually (at least initially)
correspond to the roles that were assigned to it, though roles may also be split into

95

Fig. 6. CArtAgO code for the contract net board artefact

multiple smaller capabilities or merged into a larger one. Plans are procedures
that can be triggered by events such as the desire to achieve a goal or the belief of
perceiving something. The concept of Data in Prometheus allows representation of
domain information and entities that are outside of the agent paradigm [3].

Figure 8 shows a snippet of the agent overview diagram for initiator agents.
This diagram shows the following 5 capabilities: priced job analysis, auction job anal-
ysis, auction job winner verification, announcement procedure, and award procedure.
The priced or auction job percept triggers its corresponding analysis capa-
bility, which uses as data map information and/or vehicle information.
When our initiator decides that a priced job will be taken, it creates the goal of
separate tasks, which will be the input of the announcement procedure.
When it is decided that an auction job is worth to take, the path is a little longer, because
we have to make a bid to the server, and our team may not be the bid winner. So, we
make a bid and save it, until we get a percept from the server of who is the auction
job winner. If we verify that we won, then we can add the goal of separate
tasks. This goal starts the announcement procedure, which divulges the task
to our bidder agents. The next and final step is the award procedure, which col-
lects the bids and award one of our agent to execute the desired task.

Figure 9 shows a snippet of the agent overview diagram for bidder agents, focus-
ing on the bid procedure and its corresponding capability overview diagram. The
bid procedure is responsible to analyse the context and calculate a bid for a task.
Thus, it receives as input the percept of a task, and data about the map and vehicles;

96

Fig. 7. Data coupling overview diagram

and produces as output the bid action, storing its value as a belief. The focus ac-
tion happens on a contract net board artefact, which receives the bid action.
Among the vehicle features data, it is the vehicle speed, load capacity, battery,
tools, and so on. Figure 9 also shows code in JaCaMo which corresponds to the capa-
bility overview diagram of bid procedure. It shows two plans in JaCaMo (+task
and +!calculate bid) that correspond to the two plans in PDT. The icons of plans
in PDT are directly converted to plans in Jason with their corresponding triggering
events and plan bodies composed of actions, goals and data manipulations.

Figure 10 illustrates the capabilities and plans of vehicles agents, such as, for exam-
ple, the find items and get items capabilities. The plan to find items build
a list of items to buy and a list of items to assemble. Then, the plan to get items
uses such lists as inputs to generate goals corresponding to the actions of goto, buy
and assemble. Figure 10 shows Jason code for the vehicle agent, with the plans
to achieve the goals of find items and get items. These code is traced to the
elements represented in the Prometheus diagram illustrated in Figure 10. The find
items plan has queries to discover which products must be bought and which are the
best shops and workshops for that vehicle to acquire its desired resources. Some items
cannot be bought directly in shops, but can only be obtained from assembling some spe-
cific items in a workshop. Thus, the find items creates beliefs about which items
should be bought in each shop, and which workshops should be visited in order to as-
semble the composite items. The plan to get items creates the goals of go to each
of these locations, buy the items and make the desired assembles.

Visually, the diagrams lack some graphical notion of ordering among the elements
in a plan in the agent overview and capability overview diagrams. Plans are usually
defined as an orderly or step-by-step conception or proposal for accomplishing an ob-
jective. A visual notation that could represent such things would be very interesting for
modelling plans of MAS in the diagrams of Prometheus. In Moise, plans are composed
as a list of sub-goals and an operator that specifies sequence, choice or parallelism.

97

Fig. 8. Agent overview diagram for initiator agents

Thus, there is a mismatch between Prometheus and Moise where information would be
lost or missing when converting from one specification to another.

We found confusing the fact that it is possible to place plans in the agent overview
diagram. Prometheus works with the concept of capability, and each capability must
be implemented through at least one plan in its corresponding capability overview di-
agram. Then, if a plan is placed in the agent overview diagram, it does not fit neither
contribute to any capability that the agent is supposed to have.

Some aspects that did not contribute significantly during the modelling or develop-
ment of our case study are now discussed. The scenario overview diagram shows only
one kind of element (scenarios) and they cannot be linked, which is not very useful
from the viewpoint of graphical models. When clicking on a scenario, it is possible to
define its properties in textual formats and the steps of the scenario in tables (not very
visually friendly formats). Also, it is not possible to define properties or additional in-
formation in relationships among PDT elements. For example, consider that we could
link roles, then we could say that they are disjoint, or that a role specialises another, and

98

Fig. 9. Snippets of the agent overview diagram for bidder agents, capability overview diagram
for bid procedure, and corresponding JaCaMo code (more specifically, Jason code)

99

Fig. 10. Capabilities and plans of vehicle agents in Prometheus and corresponding Jason code

100

so on for other types of relationships. According to the papers of Prometheus [3], the
steps of scenarios can assume only one of the following types: percept, action, goal or
(sub)scenario. However, PDT allows roles to be steps of scenarios, and the meaning for
this is not clear for us. We think that protocols should be able to be added as steps of a
scenario and, currently, PDT does not allow for such thing.

The goal overview diagram addresses only goals. Since PDT creates a goal for
each scenario, and the scenarios correspond to the main functionalities of the system
[3], the goals are best viewed as system’s use cases. However, later diagrams treats
goals as triggering of plans, and then goals are better interpreted as individual desires of
agents. We believe that these different views on goals can be confusing and their mean-
ing should be defined more precisely. The BDIMessage addresses only goals, however
messages could also transmit beliefs and plans (when considering JaCaMo). Some other
diagrams, such as system role, data coupling and agent role grouping overview, did
not add much information for our case study.

Plans can have only one triggering condition, and there is not a direct and simple
graphical representation of the context for plans (i.e., predicates that must be true to
consider a given plan applicable). Also, it would be interesting to represent conditions
(semantically different from the plan trigger) that can lock or unlock the execution of a
plan, such as the presence of a belief resulted from a percept of something (e.g., vehicles
can have a plan that waits until a percept of request action comes from the server). Two
entities cannot have the same name [3], for example a goal and a plan. This impossibility
can result in more advantages than limitations, but in our case it was the opposite. For
example, a goal can be the triggering condition of a plan in Jason, so we would like
to use to same name to refer to these two different (but related) entities. Also, it is
not possible to have references to non-existent entities, since creating a reference will
create the entity if it does not exist and when an entity is deleted all references to it are
deleted as well. The propagation of changes is, usually, a good thing, but can generate
unexpected results when we would like to change something only in one place, or we
are not aware about other changes that resulted from a single modification.

4 Related Work

Prometheus and PDT are used to develop the design of a conference management sys-
tem case study [5]. This work pointed out the importance of integrating Prometheus
with other agent software design tools and methodologies. Then, the conference man-
agement system case study was also modelled with O-MaSE and Tropos in another
paper [3], which compared Prometheus with its alternatives based on such example.
We differ from these papers since, besides modelling a more complex scenario, we fo-
cus on pointing out limitations and divergences of Prometheus with regards to JaCaMo.
Thus, rather than showing cases that could be successfully modelled, this paper high-
lights and discusses situations that were impossible to model or that turn out to be more
confusing than enlightening.

Prometheus AEOlus [9] allows the integrated development of the three MAS di-
mensions (agent, environment and organisation) which contributes with: (i) a new meta-
model that combines the meta-models of Prometheus and JaCaMo; (ii) a new interactive

101

incremental process based on the Prometheus process; and (iii) a code generation ap-
proach for JaCaMo based on this new meta-model. Prometheus AEOlus improves mod-
elling, code generation and reduces the conceptual gap between the analysis and imple-
mentation phases. It extends Prometheus to include concepts that improve the mod-
elling and code generation of the environment and organisation dimension for JaCaMo
programming platform, where JaCaMo concepts were used to improve Prometheus de-
velopment process to ensure that concepts used during the design and analysis stages
will be used in the implementation stage. The code generation in Prometheus AEOlus
requires the refinement of entities in the model to generate code (for JaCaMo compo-
nents, i.e., Jason, Moise and CArtAgO). Thus, the models must be refined to include
platform-specific information, and once the first version of code is generated, the mod-
els are no longer used during the programming step to complete the MAS development.

Research in the direction of tools for developing MAS through exploiting model-
driven engineering techniques have led to a new proposal [4] of using Ecore with
Prometheus. Ecore is used by the Eclipse Meta-modelling Framework to define meta-
models, and it is applied to develop the meta-model concepts specific to Prometheus.
More specifically, it addressed the generation of MAS graphical editors based on the
models and how agent code generators can be developed from such visual models. In
the end, MAS programming code can be automatically generated from the models,
ranging from code skeletons to completely deployable products. To demonstrate this
claim, templates have been created to automatically generate code in JACK language.
Once the model is converted to code, the developer must continue the programming
without using the model.

5 Final Remarks

This paper uses a MAS case study to highlight a number of discrepancies between the
paradigms behind methodologies for AOSE and programming languages for MAS. In
particular, the paper focuses on Prometheus [6] as the agent-oriented methodology and
JaCaMo [1] as the framework for multi-agent programming. On one hand, Prometheus
is one of the most well-known MAS model and methodology for developing intelli-
gent agent systems. On the other hand, JaCaMo is a framework for MAS program-
ming that combines three separate technologies: Jason for coding autonomous agents
in AgentSpeak, CArtAgO for programming the environment as artefacts in Java, and
Moise for specifying MAS organisations in XML. This paper highlights some aspects
of MAS not covered or not aligned by models in Prometheus [6] when JaCaMo [1] is
considered as the coding platform. The identification of mismatches between software
engineering toots and programming languages can help in improving both and could
result in a better alignment between them. Even for the concepts referred by the same
name, there are differences and mismatches in the precise meaning of them. In fact, we
provide evidences of gaps between the investigated approaches which allows to derive
some important conclusions. For example, while many methodologies were proposed
for agent programming in the past, they are not sufficient for the new and emerging
techniques in agent programming, such as dealing with the multiple abstraction levels
and not focusing only on the agents as individuals.

102

Our analysis of these techniques in practice allowed us to identify points for im-
provements. Such empirical study evaluates the state of the art in technologies and
guide the development of new technologies based on the limitations of current ones. An
interesting continuation of our work is to explore the same case study using alternatives
for Prometheus [6] and JaCaMo [1]. We plan on expanding our models with more de-
tailed strategies in Prometheus for this case study. Based on that, we want to advance
our explorations on the relations of Prometheus with JaCaMo. The findings described
in this paper are supported by a single case study, so we have to be careful to expand
or generalise such discoveries for different contexts. Eventually, after trying other case
studies and confirming the limitations shown here it will be possible to propose new
approaches or enhancements for such AOSE approaches. Some limitations we faced
when using Prometheus were already pointed out by their authors and claimed as fu-
ture work [6], such as, for example, the introduction of social concepts to improve the
models. However, these improvements are not available in the latest official version of
PDT. One could question some of our modelling decisions, however, this paper is less
about the details of the case study, and more about the broader vision towards AOSE
approaches. Another interesting discussion is the relation of how similar problems ex-
ist and/or have been solved over the past 20 years in the general Software Engineering
(SE) literature. A clear understanding of the evolution in mainstream SE can be crucial
for evolving AOSE in the right direction.

References

1. Boissier, O., Bordini, R.H., Hübner, J., Ricci, A., Santi, A.: Multi-agent oriented programming
with JaCaMo. Science of Computer Programming 78(6), 747–761 (2013)

2. Bordini, R.H., Dix, J.: Programming multiagent systems. In: Weiss, G. (ed.) Multiagent Sys-
tems 2nd Edition, chap. 11, pp. 587–639. MIT Press (2013)

3. DeLoach, S.A., Padgham, L., Perini, A., Susi, A., Thangarajah, J.: Using three AOSE toolkits
to develop a sample design. International Journal of Agent-Oriented Software Engineering
3(4), 416–476 (2009)

4. Gascueña, J.M., Navarro, E., Fernández-Caballero, A.: Model-driven engineering techniques
for the development of multi-agent systems. Engineering Applications of Artificial Intelli-
gence 25(1), 159–173 (2012)

5. Padgham, L., Thangarajah, J., Winikoff, M.: The prometheus design tool a conference man-
agement system case study. In: Agent-Oriented Software Engineering VIII, LNCS, vol. 4951,
pp. 197–211. Springer Berlin Heidelberg (2008)

6. Padgham, L., Winikoff, M.: Prometheus: A methodology for developing intelligent agents. In:
Agent-Oriented Software Engineering III. LNCS, vol. 2585, pp. 174–185 (2003)

7. Smith, R.G.: The contract net protocol: High-level communication and control in a distributed
problem solver. IEEE Trans. Comput. 29(12), 1104–1113 (Dec 1980)

8. Sun, H., Thangarajah, J., Padgham, L.: Eclipse-based prometheus design tool. In: Proceedings
of the 9th International Conference on Autonomous Agents and Multiagent Systems. vol. 1,
pp. 1769–1770. IFAAMAS (2010)

9. Uez, D.M., Hübner, J.F.: Environments and organizations in multi-agent systems: From mod-
elling to code. In: 2nd International Workshop on Engineering Multi-Agent Systems. pp. 181–
203 (2014)

103

Application Framework with Abstractions for Protocol
and Agent Role

Bent Bruun Kristensen

Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Denmark
bbkristensen@mmmi.sdu.dk

Abstract. In multi-agent systems, agents interact by sending and receiving
messages and the actual sequences of message form interaction structures
between agents. Protocols and agents organized internally by agent roles
support these interaction structures. Description and use of protocols based on
agent roles are supported by a simple and expressive application framework.

Keywords: Multi-agent system, Protocol, Agent role, Reactive and proactive
role, Application framework.

1 Introduction

Agents are active, autonomous, and smart, i.e. among others capable of reactive and
pro-active behavior [1]. A multi-agent system consists of a number of agents
interacting with one-another—and to successfully interact, agents require the ability
to cooperate, coordinate, and negotiate with each other. We describe interactions by
protocols that relate agent roles of such communicating agents.

 Abstraction is essential: “Without abstraction we only know that everything is
different” [2] meaning that use of abstractions to describe observations is essential for
the resulting understanding. Dialogues and agent roles are abstractions, i.e. by these
concepts the developer can understand and describe the organization structure of
agents as well as the interaction structure between communicating agents.

Our aim is to support protocols that capture communication between agent roles by
an object-oriented application framework [3] with agents, reactive role, proactive role
and message. The underlying agent model and the application framework are
illustrated by the Contract Net [1]. The model and framework are compared to related
work and evaluated.

2 Agent Model

Reactive and Proactive Roles. Agents communicate by sending and receiving
messages representing events as illustrated in Fig. 1. An agent consists of a varying
number of reactive and proactive roles. Reactive and proactive roles are abstractions
for internal organization of an agent and messages are sent from and received by these

104

roles. If a message is sent to the agent itself a default reactive role of the agent
receives the message.

The roles of an agent execute one at a time and in a non preemptive way [4], i.e.
they exhibit cooperative multitasking, in which case a role can self-interrupt and
voluntarily give up control. Reactive and proactive roles are stereotypes but
combinations can be described. Each reactive and proactive role has a list of messages
to be handled on a first come first served basis. A reactive role repeats the execution
of an action to take care of its list of messages whenever the handling of the previous
message is completed and the awaiting message list is not empty. A proactive role
consists of a single execution of an action that takes care of pausing as well as waiting
and handling messages until its purpose is completed.

Agent Agent Role (Reactive Role or Proactive Role)

…

Message

…

Receiving Role Sending Role
Fig. 1. Agents organized by reactive and proactive roles.

Protocols. A protocol describes a process where an initiator initializes the interaction
by sending messages to a number of participants where after these participants may
reply to the initiator as part of the interaction, etc. The protocol takes place between
proactive roles of agents. The protocol and the proactive roles together form
abstractions over an interaction structure between the involved agents.

 A1

M2

A2

M1

M3

P

R2 R1

Fig. 2. Illustration of protocol and proactive roles

Fig. 2 illustrates a protocol P between proactive roles R1 and R2 in agents A1 and A2.
Role R1 initializes the interaction by sending a message M1 to role R2. Role R2 replies
with message M2 to R1. In this manner a protocol between R1 and R2 may describe a
continued interaction between R1 (from A1) and R2 (from A2). The protocol illustrated
in Fig. 2 is similar to the coroutine mechanism of SIMULA [5] in the sense that a role
sends a message, immediately suspends itself and the receiving role is resumed.

105

Problem Recognition Task Announcements

Awarding Bidding

Fig. 3. Illustration of Contract Net

Example: Contract Net. Fig. 3 illustrates the Contract Net with a collection of
stickmen. Each stickman in the collection can, at different times or for different tasks,
be involved in several simultaneous tasks as both manager and contractor. When a
stickman gets a composite task (or for any reason cannot solve its present task), it
breaks the task into subtasks (if possible) and announces them (acting as a manager),
receives bids from potential contractors, and then possibly awards a contractor. If no
bids are received after a given period of time the manager gives up the negotiation. If
a bid is not awarded after a given period the contractor gives up the negotiation.

ProActive Role

ParticipantInitiator

Agent Role

1 *

1

ReActive Role

Agent System

ContractorManager

Utility System

Agent Protocol

CN ProtocolUtility Agent

ContractorManager

Test System

Test Agent

Agent Message

CN Message

Fig. 4. Conceptual Model showing the contents of and relations between Agent System,
Utility System and Test System

106

A model for the Contract Net includes: A protocol is set up with a proactive role
for the manager agent (the initiator) and a proactive role for each of the contractor
agents (the participants). A manager maintains a negotiation by initiating an
interaction with a number of contractors. A contractor receives a task announcement
and may reply with a bid to the manager. Having received bids the manager chooses
among these and may reply with an award to the chosen contractor in which case a
contract is established.

3 Framework Overview

Fig. 4 illustrates the conceptual model of the application framework with
Agent_System that is specialized to another application framework
Utility_System (to support various protocols with the Contract Net as an example)
that in turn is used in the application Test_System. The contents of and relations
between Agent_System, Utility_System and Test_System are described in the
following sections.

… class Agent_System {

… abstract class Protocol {
… Protocol (Agent initiator, Agent[] participant) {
…
initiatorRole = initiator.newInitiatorRole(this);
for (int i = 0; i< …; i++) {
participantRole[i] =

participant[i].newParticipantRole();
};

}

…
… Agent.Initiator initiatorRole;
… Agent.Participant[] participantRole = … ;

}

… abstract class Agent extends … implements … {
…
… abstract class Agent_Role extends … {…}

… abstract class ReActive_Role extends Agent_Role {
abstract … int Act(Agent_Message am)
…

};

… abstract class ProActive_Role extends Agent_Role {
abstract … void Act()
…

}

… abstract class Initiator extends ProActive_Role {…}
… abstract class Participant extends ProActive_Role {…}
… abstract Initiator newInitiatorRole(Protocol p)
… abstract Participant newParticipantRole();

}

… abstract class Agent_Message extends EventObject {…}
}

Fig. 5. Application Framework: Agent_System

107

4 Application Framework: Agent System

Fig. 5, 6 and 7 show extracts of the textual version of the application framework
Agent_System with classes and methods shown in grey. Fig. 5 shows class
Agent_System with abstract classes Agent, Protocol and Agent_Message. Class
Agent has abstract classes ReActive_Role and ProActive_Role (extending class
Agent_Role). Class ProActive_Role is extended to classes Initiator and
Participant both related to class Protocol. In addition classes ReActive_Role
and ProActive_Role include the abstract method Act(…). The Act(…) method of
class ReActive_Role returns a delay until next invocation and is invoked repeatedly
with the next message as parameter while messages are waiting. The Act() method
of class ProActive_Role is invoked only once and its execution may include
pausing, awaiting messages, etc. until its execution is completed. Abstract methods
newInitiatorRole and newParticipantRole are used by Protocol to instruct
actual specializations of Agent to instantiate actual specializations of Initiator and
Participant. Class Protocol instantiates and starts the execution of
InitiatorRole (with the Protocol object as parameter) for InitiatorAgent
and of ParticipantRole for each of the ParticipantAgents.

… abstract class Agent_Role extends … {
… void rolePause(int sleepTime) {…}
… Agent_Message roleAwait() {…}
… void replyMessage(Agent_Message rm, Agent_Message am) {…}
… Agent_Message handleMessage() {…}
…

}
Fig. 6. Interaction methods of class Agent_Role

Fig. 6 shows extracts of selected interaction methods of class Agent_Role
(inherited by ReActive_Role and ProActive_Role):
• rolePause(…), the role pauses for a period of time
• roleAwait(), the role waits until a message is received and then returns the

message
• replyMessage(…), a message is sent to a role of another agent as a reply to

a message received from that role
• handleMessage(), the next waiting message is returned (if any and else

null)

… abstract class Agent_Role extends … {
… void initiateProtocol(Agent_Message am, Participant p) {…}
… void replyProtocol(Agent_Message ram, Agent_Message am) {…}
…

}
Fig. 7. Methods initiateProtocol and replyProtocol

108

Class Protocol sets up the protocol between agent roles—the Initiator and the
Participants agents. Fig. 7 shows extracts of the interaction methods related to the
protocol:
• initiateProtocol(…), the Initiator sends a message am to a

Participant to initialize the protocol.
• replyProtocol(…), either the Initiator or a Participant send a

message ram in reply to message am received within the protocol.

5 Application Framework: Utility System

Class Agent_System can be used directly to construct a multi-agent system with
reactive and proactive agent roles and protocols. We choose to extend
Agent_System to another abstract class Utility_System to illustrate an example
of an abstract protocol—the Contract Net. Classes Utility_System is then
specialized in class Test_System as an actual use.

Fig. 8 shows the ingredients of the specialization of Agent_System to
Utility_System: Protocol is specialized to CN_Protocol and the proactive roles
Initiator and Participant to Manager and Contractor, respectively. Classes
Manager and Contractor specify their own Act() method according to the
Contract Net. And each of these Act() methods makes use of additional methods
(shown as dotted) to be implemented in the actual use of the Utility_System.

ParticipantInitiator

1 *

1
Protocol

CN Protocol

ProActive Role

… Act(…)

Manager Contractor

… Act(…) { … } … Act(…) { … }

…

Agent Role
… initiateProtocol(…) {…}
… replyProtocol(…) {…}

…

Fig. 8. Specialization of Agent_System to Utility_System

Fig. 9 illustrates how Utility_System and Utility_Agent extend
Agent_System and Agent, respectively. Class Protocol is extended to
CN_Protocol that initializes a Manager role for the Initiator agent and a
Contractor role for each of the Participant agents.

109

… abstract class Utility_System extends Agent_System {

… class CN_Protocol extends Protocol {
… CN_Protocol (Agent initiator, Agent[] participant) {
super(initiator, participant);
…

}

… Utility_Agent.Manager managerRole;
… Utility_Agent.Contractor[] contractorRole = … ;
…

}

… abstract class Utility_Agent extends Agent {

… abstract class Manager extends Initiator {
… Manager (Protocol protocol) {…}
… void Act() {…}

};

… abstract class Contractor extends Participant {
… void Act() {…}

}
}

}
Fig.9. Utility_System with CN_Protocol

When a Protocol is instantiated as shown in Fig. 10 its constructor initializes
ManagerRole through the executing agent and ContractorRoles through
otherAgents.

new CN_Protocol(Test_Agent.this, otherAgents);

Fig. 10: Creation of a CN_Protocol

Fig. 11 shows abstract class Manager as an extension of Initiator. Method
Act() of class Manager uses the abstract methods (hot spots cf. [6]) in italics
(implemented in Test_System).

… abstract class Manager extends Initiator {
…
… void Act() {…}

… abstract CN_Task createCN_Task(int t)
… abstract CN_Task.Offer createOffer(CN_Task t)
… abstract CN_Message newOfferMessage(Agent a, CN_Task t)
… abstract int bidDelayTime()
… abstract CN_Message selectBid(CN_Message[] ms, int l)
… abstract CN_Task.Award createAward(CN_Task t)
… abstract CN_Message newAwardMessage(Agent a, CN_Task t)

}
Fig. 11. Class Manager

Fig. 12 shows the actual sequencing in the Act() method of class Manager—
illustrated by the comments: Prepare and send offers, Wait a while until

110

bids have arrived, Collect received bids, Select a bid and prepare
and send an award.

… void Act() {
CN_Protocol cnd = (CN_Protocol) protocol;
CN_Message m;

// … … … … … Prepare and send offers …
int taskNo = allTasks++;
for (int i = 0; i<cnd.contractorAgent.length; i++) {
CN_Task t = createCN_Task(taskNo);
if (t.addOffer(createOffer(t))) {
m = newOfferMessage(cnd.contractorAgent[i], t);
initiateProtocol(m, cnd.contractorRole[i]);

};
};

// … … … … … Wait a while until bids have arrived …
rolePause(bidDelayTime());

// … … … … … Collect received bids …
CN_Message[] ms = new CN_Message[…];
int i = 0;
while ((m = (CN_Message) handleMessage())!=null) {
if (m.typeMessage(CN_Kind.BID)) {
ms[i++] = m;

};
};

// … … … … … Select a bid, prepare and send an award …
if ((m = selectBid(ms, i))!=null) {
CN_Task t = m.cnTask;
t.addAward(createAward(t));
CN_Message mm = newAwardMessage(m.fromAgent, t);
replyProtocol(mm, m);

};
}

Fig.12. Method Act() of Manager

Fig. 13 shows abstract class Contractor as an extension of Participant.
Method Act() of class Contractor uses the abstract methods in italics
(implemented in Test_System).

… abstract class Contractor extends Participant {

… void Act() {…}

… abstract CN_Task.Bid createBid(CN_Task t)
… abstract CN_Message newBidMessage(Agent a, CN_Task t)
… abstract int awardDelayTime()
… abstract void handleAward(CN_Message m)

}

Fig. 13. Class Contractor

Fig. 14 shows the actual sequencing in the Act() method of class Contractor—
illustrated by the comments: Wait to receive an offer, Possibly prepare
and send a bid, Wait to receive an award, Possibly receive and
handle the award.

111

… void Act() {
// … … … … … Wait to receive an offer …
CN_Message m = (CN_Message) roleAwait();
if (m.typeMessage(CN_Kind.OFFER)) {

// … … … … … Possibly prepare and send a bid …
CN_Task t = m.cnTask;
if (t.addBid(createBid(t))) {
CN_Message mm = newBidMessage(m.fromAgent, t);
replyProtocol(mm, m);

// … … … … … Wait to receive an award …
rolePause(awardDelayTime());

// … … … … … Possibly receive and handle the award …
if ((m = (CN_Message) handleMessage())!=null) {
if (m.typeMessage(CN_Kind.AWARD)) {
handleAward(m);

};
};

} else return;
};

}

Fig. 14. Method Act()of Contractor

Fig. 15 shows CN_Message as an extension of Agent_Message where CN_Task
represents the actual task to be undertaken (with respect to Offer, Bid and Award)
and CN_Kind enumerates the actual message types in Contract Net.

… class CN_Message extends Agent_Message {
… CN_Message(… , CN_Task cnt, CN_Type cnk, …) {
…

}
…
… CN_Kind cnk;
… CN_Task cnt;

}

… class CN_Task {…}

enum CN_Kind {OFFER, BID, AWARD}
Fig. 15. Classes CN_Message, CN_Task and CN_Kind

6 Test System

Fig. 16 shows Test_System, as an extension of Utility_System where class
Test_Agent extends Utility_Agent. The abstract methods newInitiatorRole
and newparticipantRole are implemented to return objects of the actual Manager
and Contractor classes specialized from Manager and Contractor of
Utility_Agent. Classes Manager and Contractor implement the abstract
methods from Fig. 11 and 13, respectively.

112

… class Test_System extends Utility_System {

… class Test_Agent extends Utility_Agent {
… Initiator newInitiatorRole(Protocol protocol) {
return (new Manager((CN_Protocol) protocol));

}
… Participant newParticipantRole() {
return (new Contractor());

}
…
… class Manager extends Utility_Agent.Manager {…}
… class Contractor extends Utility_Agent.Contractor {…}

}
}

Fig. 16. Test_System with Test_Agent

The protocol using the OFFER, BID and AWARD messages is simple and therefore
the structures of the roles illustrated in Fig. 12 and 14 are simple too. But these roles
would remain simple if they involved additional interaction, i.e. such as re-
announcing subtasks, continued negotiations about details, etc. A Test_Agent
involved in several simultaneous contract negotiations would not complicate the
description but only require additional instantiations of the existing protocol.

Fig. 17 is a snapshot of the dynamic flow of messages between agents. This feature
is a part of the application framework, i.e. it is general although it is parameterized
with the actual extension of the framework—in this case Contract Net. For each
agent, i.e. for Test_Agent 2 there is a column of messages sent Messages Out: 6
and received Messages In: 6 showing total number of messages and a list of actual
messages. The actual messages are colored to indicate the status of a message, i.e.
sent, received, forwarded, handled and to be removed. It can be seen from Fig. 17 that
TEST_Agent2 sends offer 5 that is received by TEST_Agent1; TEST_Agent1
replies with bid 5 that is received by TEST_Agent2; TEST_Agent2 replies with
award 5 that is received by TEST_Agent1. This protocol is similar to the M1, M2,
M3 protocol illustrated in Fig. 2.

Fig. 17. Flow of messages between agents

113

7 Background, Related Work, Evaluation

Background. The FLIP project [7] investigates a transportation system including
moving boxes from a conveyor belt onto pallets and transporting these pallets in the
high bay area of the LEGO® factory with AGVs, no human intervention and only
centralized control. A toy prototype includes agents in the form of LEGOBots based
on a LEGO® MindstormsTM RCX brick extended with a PDA and wireless LAN.
The DECIDE project [8] includes a number of real applications: Control of a baggage
handling system in a larger airport in Asia; Intelligent control of handling material
with recipes in productions processes; Coordination and planning of large vehicle
transports at a shipyard; Design and implementation of a very flexible packing
machine. These applications illustrates that the complexity of the communication
structure between agents needs to be supported by structurally simple and expressive
abstractions.

A course about agent oriented programming includes the construction of a multi-
agent system based on the application framework. The task is to design and
implement the management of the evolution of a collection of animal parks. A
solution is to use reactive roles to react to incoming messages concerning actual
changes—and proactive roles to support buying and selling animals by negotiating
with other agents. The experience includes that the complexity of the communication
structure of simple toy-like multi-agent systems is overwhelming, because the basic
communication sequence is simple but the management of several simultaneously
ongoing communication sequences is complicated.

Related Work. The application framework is for implementing protocols and agent
roles, i.e. for describing abstractions and using these in concrete applications. The
purpose of [9] is modelling of agent interaction protocols in AUML as a set of UML
idioms and extensions. In [10] the purpose is to specify, validate and evaluate
interaction protocols expressed as recursive colored petri nets. The purpose of [11] is
to experiment with the enhancement of object orientation with agent-like interaction
including protocol and role introduced in the powerJava extension of Java to allow
session-aware interactions. In [12] the purpose is to load interaction protocols
dynamically through role, action and message ontologies, process description with
decision-making rules and a three-layer agent architecture. Dialogue games are the
basis for agent interaction protocols for convincing through arguments—in [13] by
formal definition of the PARMA protocol—in [14] by a categorization of types of
dialogue games with examples of protocols.

The use of object-oriented languages for creating frameworks with concepts from
multi-agents is well known, as well as the notion of protocol, agent role, reactive and
proactive agents. But the actual form of protocol, reactive and proactive roles of
agents and their inclusion in the application framework is original. A protocol is
between one initiator and several participants, i.e. the initiator sends a message to the
participants that may send a message back to the initiator, i.e. the initiator
communicate with each of the participants but the participants do not communicate
together. Protocols may be organized with part-protocols to support that a participant
(as part of an ongoing protocol) may be initiator of a part-protocol.

114

Reactive and proactive roles are related to behaviours in JADE [15] and plans in
JACK [16]: In JADE the agent life-cycle is described by behaviors by extending the
Behaviour class. An agent can execute several behaviors in parallel. However,
behavior scheduling is not preemptive, but cooperative—and everything occurs
within a single Java thread. In JACK an agent will look for the appropriate plans to
handle goals and events. The plan (an abstraction above object-oriented constructs)
inherits from a Plan class that implements the plan´s base methods and the
underlying functionality. Neither behaviors nor plans support the notion of reactive
and proactive role explicitly but may be utilized to expose similar behavior. In JADE
createReply()creates a new message properly setting the receivers and various
fields used to control the conversation. In JACK reply(received, sendBack)
sends a message back to an agent from which a previous message has been received
without triggering a new plan.

Evaluation. Each of the n agents in the Contract Net example may send an offer to
the n-1 other agents that may reply back etc.:
• Without the protocol abstraction we assume each agent has one (typically

reactive) role, i.e. n roles in total. However such a role has to manage up to n ongoing
communications (one of which is between up to n agents) each with their own state of
the communication. Without the protocol abstraction each role takes care of n
communications.
• With the protocol abstraction each agent has a manager role and sends an

offer to n-1 other agents each with a contractor role, i.e. in total n roles. When n
agents send an offer this becomes n2 roles in total. However each role is simple as
illustrated in Fig. 12 and 14 because each role is involved in exactly one protocol, i.e.
the state of the communication is captured by the role. With the protocol abstraction
each role takes care of 1 communication.

In summary the agent model and framework are simple and understandable but still
expressive. By the abstractions protocol and agent role we substitute the usual
complexity of describing the handling (including state and progress) of several
simultaneously ongoing communications by simple, statically structured protocols
and roles.

By identifying protocol and agent roles in the Contract Net we classify the
interaction and the contributions of the agents by means of CN_protocol, Manager
and Contractor. However, abstraction includes not only classification but also
specialization and composition: We may see CN_protocol, Manager and
Contractor as a general description of the Contract Net, so that specialized versions
of Contract Net can be described by specializations of each of these abstractions, e.g.
CN_protocol_X, Manager_X and Contractor_X. Similarly, another more
extensive protocol can be composed by using the Contract Net as a part protocol by
using CN_protocol, Manager and Contractor in the description of this protocol.

Classes Protocol, Initiator and Participant together form abstractions
over an interaction structure. Initiator and Participant are local to an Agent in
order to have access to the local state of the Agent. Alternative solutions may be
inspired from [17] where Association is a central abstraction over interaction
sequences and integrate activities and roles of concurrent autonomous entities.

115

7 Summary

Typically the communication structure between agents becomes complicated because
powerful abstractions are not available for modelling and programming. The
application framework with protocols based on agent roles of agents offer abstract
description of simple and expressive multi-agent communication structures.

Acknowledgments. We thank Palle Nowack and Daniel May for inspiration and
support.

References

[1] M. Wooldridge. An Introduction to Multiagent Systems. Wiley, 2/e, 2009.
[2] G. Booch. Private communication, 2007.
[3] M. E. Fayad, R. E. Johnson, D. C. Schmidt. Building Application Frameworks: Object-
Oriented Foundations of Framework Design. Wiley, 1990.
[4] D. Lea. Concurrent Programming in Java: Design Principles and Patterns. Addison
Wesley 2007.
[5] O.-J. Dahl, B. Myhrhaug, K. Nygaard. SIMULA 67 Common Base Language (Editions
1968, 1970, 1972, 1984), Norwegian Computing Center, Oslo, 1968.
[6] W. Pree. Meta Patterns: A Means for Capturing the Essentials of Reusable Object-
Oriented Design. Proceedings of the 8th European Conference on Object-Oriented
Programming (Springer-Verlag), 150–162, 1994.
[7] L. K. Jensen, B. B. Kristensen, Y. Demazeau. FLIP: Prototyping Multi-Robot Systems.
Journal of Robotics and Autonomous Systems. Vol. 53, (3, 4), 2005.
[8] K. Hallenborg. Intelligent Control of Material Handling Systems. In: Environmentally
Conscious Materials Handling, M. Kutz (edt.), John Wiley & Sons, 2009.
[9] J. Odell, H. Van Dyke Parunak, B. Bauer. Representing Agent Interaction Protocols in
UML. First international workshop, AOSE 2000 on Agent-oriented software engineering, 121 -
140, Springer, 2001.
[10] H. Mazouzi, A. El Fallah Seghrouchni, S. Haddad. Open Protocol Design for Complex
Interactions in Multi-agent Systems. Autonomous Agents and Multi-Agent Systems, 2002:
517-526.
[11] M. Baldoni, G. Boella, L. van der Torre. Importing Agent-like Interaction in Object
Orientation. Proceedings of the 7th WOA Workshop, From Objects to Agents, 2006.
[12] M. Wang, Z. Shi, W. Jiao. Dynamic Interaction Protocol Load in Multi-agent System
Collaboration. Multi-Agent Systems for Society. Lecture Notes in Computer Science, Volume
4078, 2009, pp 103-113.
[13] K. Atkinson, T. Bench-Capon, P. McBurney. A Dialogue Game Protocol for Multi-Agent
Argument over Proposals for Action. Autonomous Agents and Multi-Agent Systems, 11 (2),
153-171, 2005.
[14] P. McBurney, S. Parsons. Dialogue Games in Multi-Agent Systems. Informal Logic, 22
(3) (2002), pp. 257–274.
[15] F. Bellifemine, G. Caire, D. Greenwood. Developing Multi-Agent Systems with JADE.
Wiley, 2008.
[16] http://www.agent-software.com. JACK Intelligent Agents—Agent Manual. JACK
Intelligent Agents—Agent Practicals.
[17] B. B. Kristensen. Rendezvous-Based Collaboration between Autonomous Entities:
Centric versus Associative. Concurrency and Computation: Practice and Experience, vol. 25,
no. 3, pp. 289-308, Wiley Press, 2013.

116

A Namespace Approach for Modularity in BDI
Programming Languages

Gustavo Ortiz-Hernández1,2, Jomi F. Hübner3, Rafael H. Bordini4, Alejandro
Guerra-Hernández2, Guillermo J. Hoyos-Rivera2, and Nicandro Cruz-Ramı́rez2

1 Centro de Investigaciones en Inteligencia Artificial - UV
Xalapa, México

2 Institute Henri Fayol - MINES
Saint-Étienne, France

3 Federal University of Santa Catarina
Florianópolis, SC, Brazil

4 FACIN-PUCRS
Porto Alegre, RS, Brazil

Abstract. In this paper we propose a model for designing Belief-Desire-
Intention (BDI) agents under the principles of modularity. We aim to
encapsulate agent functionalities expressed as BDI abstractions into in-
dependent, reusable and easier to maintain units of code, which agents
can dynamically load. The general idea of our approach is to exploit
the notion of namespace to organize components such as beliefs, plans
and goals. This approach allowed us to address the name-collision prob-
lem, providing interface and information hiding features for modules.
Although the proposal is suitable for agent-oriented programming lan-
guages in general, we present concrete examples in Jason.

Keywords: Agent-Oriented Programming, Modularity, Namespace

1 Introduction

In the last decades, several programming paradigms have arisen, often presented
as an evolution of their predecessors, and with the main purpose of abstracting
more complex and larger systems in a more natural and simpler way. Particu-
larly, the Agent-Oriented-Programming (AOP) paradigm has been promoted as
a suitable option to deal with the challenges arising when developing modern
systems. This paradigm offers high-level abstractions which facilitate the design
of large-scale and complex software systems, and also allows software engineers
to employ a suite of well-known strategies for dealing with complexity, i.e., de-
composition, abstraction and hierarchy.

These strategies are usually applied at the Multi-Agent-System (MAS) level
[18,7,13]. However, even a single agent is intrinsically a complex system, hence
its design and development should consider the above mentioned strategies. Re-
garding this, the principle of modularity applied to individual agent development
can significantly improve and facilitate the construction of agents.

117

In this paper, we present an approach for programming agents following the
principle of modularity, i.e., to develop agent programs into separate, indepen-
dent, reusable and easier to maintain units of code. In order to support modu-
larity, we identify three major issues to be addressed: i) a mechanism to avoid
name-collision, ii) fulfilling the information hiding principle, and iii) providing
module interfaces.5

Our contribution is to address these issues by simply introducing the notion
of namespace in the AOP paradigm. In the context of BDI languages, which is
the focus of this paper, the novelty of our approach is that it offers a syntactic
level solution, independent of the operational semantics of some language in
particular, which simplifies its implementation.

The rest of this paper is organized as follows: related and previous work are
presented in Section 2; our proposal is described in Section 3; we explain details
of implementation in Section 4 and offer an example in Section 5; an evaluation
is presented in Section 6; finally, we discuss and conclude in Sections 7 and 8
respectively.

2 Related Work

There exist much work supporting and implementing the idea of modularity in
BDI languages. An approach presented by Busetta et al. [5] consists in encap-
sulating beliefs, plans and goals that functionally belong together in a common
scope called capability. The programmer can specify a set of scoping rules to
say which elements are accessible to other capabilities. An implementation is
developed for JACK [16]. Further, L. Braubach et al. [2] extend the capability
concept to fullfill the information hiding principle by ensuring that all elements
in a capability are part of exactly one capability and remain hidden from out-
side, guaranteeing that the information hiding principle is not violated. An im-
plementation for JADEX [3] is provided. Both approaches propose an explicit
import/export mechanism for defining the interface.

The modules proposed by Dastani et al. [11] are conceived as separate mental
states. This modules are instantiated, updated, executed and tested using a set of
predefined operations. Executing a module means that the agent starts reasoning
in a particular mental state until a predefined condition holds. This approach is
extended by Cap et al. [6], by introducing the notion of sharing scopes to mainly
enhance the interface. Shared scopes allow modules posting events, so that these
are visible to other modules sharing the same scope. These ideas are conceived
in the context of 2APL [9] and an implementation is described in [10].

Also following the notion of capability, Madden and Logan [20] propose a
modularity approach based on XML’s strategy of namespaces [4], such that each
module is considered as a separate and unique namespace identified by an URI.
They propose to handle a local belief-base, local goal-base and local events-queue
for each module, and then to specify, by means of an export/import statement,

5 In general, these are well-known issues when building programming languages as
discussed in [5,2,20].

118

which beliefs, goals and events are visible to other modules. In this system, there
is only one instance of each module, i.e., references to the exported part of the
module are shared between all other modules that import it. These ideas are
supported by the Jason+ language, implemented by Logan and Kiss [8].

Another work tackling the name-collision issue is presented by G. Ortiz et
al. [14]. They use annotations to label beliefs, plans and events with a source
according to the module to which they belong. In this approach, modules are
composed by a set of beliefs, plans and a list of exported and imported elements.
Both imported and exported elements are added to a unique common scope. An
implementation of this approach is developed as a library that extends Jason.

In Hindriks [15], a notion of module inspired by what they call policy-based
intentions is proposed for GOAL. A module is designated with a mental state
condition, and when that condition is satisfied, the module becomes the agent
focus of execution, temporarily dismissing any other goal. They focus on isolating
goals/events to avoid the pursuit of contradictory goals.

In Riemsdijk et al. [23], modules are associated with a specific goal and they
are executed only to achieve the goal for which they are intended to be used. In
this approach, every goal is dispatched to a specific module. Then all plans in
the module are executed one-by-one in the pursuit of such goal until it has been
achieved, or every plan has been tried. This proposal is presented in the context
of 3APL [12].

A comparative overview of these approaches is given in Table 1. All solutions
tackle the name-collision problem, providing a mechanism to scope the visibility
of goal/events to a particular set of elements, e.g., plans. They also offer different
approaches for providing the interface of modules. However, not all of them fulfill
the information hiding principle.

It is also worth mentioning that all those approaches propose some particular
operational semantics tied to the AOP language in which they have been con-
ceived and implemented. The proposal that we present in this paper provides a
mechanism to address those issues independently of the operational semantics.

3 Modules and Namespaces

A module is as a set of beliefs, goals and plans, as a usual agent program, and
every agent has one initial module (its initial program) into which other modules
can possibly be loaded. We refer to the beliefs, plans and goals within a module
as the module components (cf. Figure 1).

Modularity is supported through the simple concept of namespace, defined
as an abstract container created to hold a logical grouping of components. All
components can be prefixed with an explicit namespace reference. We write
zoo::color(seal,blue) to indicate that the belief color(seal,blue) is asso-
ciated with the namespace identified by zoo. Furthermore, note that the belief
zoo::color(seal,blue) is not the same belief as office::color(seal,blue)
since they are in different namespaces.

119

approach IL IS IH NC interface’s mechanism

Busetta et al. [5] JACK 7 3 3 explicit import/export
Braubach et al. [2] JADEX 7 3 3 explicit import/export
Dastani et al. [11] 2APL 7 7 3 set of predefined operations
Cap et al. [6] 2APL 7 7 3 sharing scopes
Madden et al. [20] Jason+ 7 3 3 explicit import/export
Hindriks [15] GOAL 7 7 3 mental-state condition
Riemsdijk et al. [23] 3APL 7 7 3 goal dispatching
Ortiz et al. [14] Jason 7 7 3 unique-common scope
Our Proposal Jason 3 3 3 global namespaces

Table 1: The columns represent existing features in the surveyed approaches, in
respect to the issues mentioned in Section 1. The abbreviations stand for: (IL)
implementing language; (IS) the approach is independent of the language’s op-
erational semantics; (IH) fulfills the information hiding principle; (NC) provides
a mechanism to deal with the name-collision issue. The last column refers to the
general notion used to provide an interface.

Namespaces are either global or local. A global namespace can be used by
any module; more precisely, the components associated with a global namespace
can be consulted and changed by any module. A local namespace can be used
only by the module that has defined the namespace.

Module

Belief Plan Goal

Namespace

Global Local

* * 1

assoc

init

1..*

Component
1

load

Agent

Figure 1: Proposed model for modularity.

We introduce the notion of abstract namespace of a module to denote a
namespace whose name is undefined at design-time, and will be defined at run-
time when the module is loaded. To indicate that a component is in a mod-
ule’s abstract namespace, the prefix is simply omitted, e.g., a belief written as
taste(candy,good) is in an abstract namespace and its actual namespace will
be defined when the module is loaded.

The module loading process involves associating every component in the
abstract namespace of the module with a concrete namespace, and then simply
incorporating the module components into the agent that loaded the module.

120

Therefore, a concrete namespace must be specified at loading time to replace
the module’s abstract namespace.

When a module (the loader) loads another module (the loaded), they interact
in two directions: the loader imports the loaded module components associated
with global namespaces and the loader extends the functionality of the module
by placing components in those namespaces. Figure 2 illustrates the interaction
when a module A loads some module B.

A B

extends
for B

imported
by A

local
namespace

global
namespace

module

Legend

Figure 2: The interaction between modules.

A module is formally defined as a tuple:

mod = 〈bs, ps, gs〉
where bs = {b1, . . . , bn} is a set of beliefs, ps = {p1, . . . , pn} is a set of plans, and
gs = {g1, . . . , gn} a set of goals. As shown in Figure 1, each of these components
is associated with a namespace. We use subscripts to denote the elements of a
module, e.g., modbs stands for the beliefs included in module mod.

3.1 Syntax

As in many programming languages, we use identifiers to refer to the module
components, i.e., its beliefs, plans and goals. Since the syntactic identifiers de-
pend on the programming language and our proposal is intended to be language
independent, we propose to extend the syntax of identifiers allowing a namespace
prefix:

〈id〉 ::= [〈nid〉 ::] 〈natid〉

where nid is a namespace identifier and natid is used to denote the native identi-
fiers of some AOP language. For example, a belief formula like count(0), whose
identifier is count, can be written ns2::count(0) to associate the belief with
namespace ns2.

We use a syntactical name-mangling technique6 to associate every component
in the abstract namespace of a particular module to a concrete namespace and
to bring support for local namespaces. Restriction access to local namespaces is
implemented by replacing every local namespace identifier in the components of

6 A technique used in programming languages, which consists in attaching additional
information to an identifier, typically used to solve name conflicts.

121

Algorithm 1: The mangling(src, nid) function associates each compo-
nent in the abstract namespace of a module program src with a concrete
namespace nid and renames local namespaces with an internally generated
identifier.
1 begin

Input: src : a module program
Input: nid : a concrete namespace

2 mod = parse(src)
3 foreach id ∈ ids(mod) do
4 if ns(id) is an abstract namespace then
5 replace id by nid::id in mod

6 if ns(id) is local then
7 replace id by #nid::id in mod

8 return mod

a particular module by an internally created identifier. This is generated in such
a way that it is not a valid identifier according to the grammar of the native
language. For instance, if ns2 is the identifier of a local namespace, the mangling
function renames ns2::color(box,blue) to #ns2::color(box,blue), where
#ns2 is an invalid identifier and thus no developer can write a program that
accesses this belief. We use #nid to denote a mapping from nid to an internally
generated identifier, unique in the module program where it is being used. The
mangling function is described in algorithm 1. To avoid cluttering the notation,
we define an auxiliary function ids(mod) = {id1, . . . idn} that gets all identifiers
id that are in the components bs, ps, and gs of module mod and function ns(id)
gives the namespace of identifier id.

3.2 Loading Modules

We represent an agent state as a tuple ag = 〈B,P,G, . . .〉, where B = {b1, . . . , bn}
stands for the agent’s belief base, P = {p1, . . . , pn} a plan library and G =
{g1, . . . , gn} the goals of the agent7. All identifiers used in the beliefs, plans and
goals are prefixed with a proper namespace. The dots symbol (. . .) is used in the
agent tuple to denote the existence of other components proper of the agent’s
mental state (such as intentions, mail box, etc.) that are not relevant for the
purpose of presenting our proposal.

When an agent loads a module, it incorporates the module components,
i.e., beliefs, plans and goals, into its own belief base, plan library and goals,

7 Sometimes when referring to intentional agents, a distinction between desires and
intentions is highlighted to focus on the commitment of the agent towards some
goal. In the agent state we do not take commitment into consideration; a goal g ∈ G
can be either a desire or an intention. However, a goal g ∈ gs in some module is
considered as an initial goal.

122

respectively. A namespace must be specified at loading time to replace the mod-
ule’s abstract namespace with a concrete namespace. A transition rule (Load)
presents the dynamics of loading a module in a particular namespace. The con-
dition (upper part) stands for the action load(src,nid) that takes a module
program src and a namespace nid as parameters. This rule executes the man-
gling function on the module and incorporates the module components into the
agent’s current state, already associated with a proper namespace identifier.

(Load)
load(src,nid)

〈B,P,G, . . .〉 → 〈B′, P ′, G′, . . .〉

where: mod = mangling(src, nid)
B′ = B ∪ modbs
P ′ = P ∪ modps
G′ = G ∪ modgs

The agent’s initial module is loaded in what we call the default namespace.
This is a predefined global namespace whose identifier is default. The initial
module program determines the initial belief base, plan library and goals of the
agent. We use src0 to denote the initial module program. The next transition
rule (Init) describes the agent’s initialization.

(Init)
src0

〈B,P,G, . . .〉 → 〈B′, P ′, G′, . . .〉

where: mod = mangling(src0, default)
B′ = modbs
P ′ = modps
G′ = modgs

4 Implementation

We present the implementation of our proposal in Jason [1], a Java-based in-
terpreter for an extended version of AgentSpeak(L) [21]. An agent program in
Jason is defined as a set of initial beliefs bs, a set of initial goals gs and a set
of plans ps, where each b ∈ bs is an atomic grounded formula (initial beliefs
may also be represented as Prolog style rules). Every plan p ∈ ps has the form
te : ctx ← body, where te stands for a triggering event defining the event that
the plan is useful for handling. A plan is considered relevant for execution when
an event which matches its trigger element occurs, and applicable when the
condition ctx holds. The element body is a finite sequence of actions, goals and
belief updates. Actions in Jason can be external or internal. An external action
changes the environment, unlike an internal action which is executed internally
to the agent. Jason allows the developer to extend the parsing of source code by
implementing user-customized directives.

The basic syntactical construct of a Jason program is a literal, which as in
logic programming has the form p(t1, . . . , tn), where p is the predicate (that can

123

be strongly negated with the ∼ operator), n ≥ 0 (literals with 0 arguments are
called atoms), and each ti denotes a term that can be either a number, list,
string, variable, or a structure that has the same format of a positive literal.
We say then that each predicate p in a Jason program is a Jason identifier. For
instance, a plan such as:

+!go(home) : forecast(sunny) ← walk to(0,0).

contains the following identifiers: go, home, forecast, sunny and walk to.
We have extended the syntax of Jason identifiers to allow a namespace pre-

fix8. Since Jason identifiers are used for beliefs and goals, by prefixing them with
a namespace these components are scoped within a particular namespace9. So,
a plan written as:

+!ns1::go(home) : ns2::forecast(sunny) ← +b.

will consider only an achievement-goal addition event +!go(home) in namespace
ns1, and a belief forecast(sunny) in namespace ns2; beliefs and goals in other
namespaces are thus not relevant for this plan. Terms within a literal are not
changed when a module is loaded. However, terms can be explicitly prefixed
with a namespace. A term prefixed with :: is in the abstract namespace (e.g. in
forecast(::sunny) the term sunny is associated with the abstract namespace).

Jason keywords (e.g., source, atomic, self, tell, . . .), strings and numbers
are handled as constants and are not associated with namespaces.

The Jason internal action .include and parsing directive include were ex-
tended with a second parameter to implement the dynamics of loading a module
as presented in Section 3.2. The first argument is the file with the module’s
source code and the second argument the global namespace used to replace the
abstract namespace. A parsing directive namespace/2 is provided to define the
type of the namespace (local or global) and as a syntactic sugar to facilitate the
namespace association of components, so that the identifiers enclosed by this
directive will be associated with the specified namespace.

The beliefs related to perception are placed in the default namespace, and
thus also the corresponding events (external events generated from perception).
This solution keeps backward compatibility with previous source code, since the
initial module is loaded in the default namespace and the previous version of
Jason does not have modules other than the initial one.

5 Example

This section illustrates our proposal for modules in more detail showing an im-
plementation of the Contract Net Protocol (CNP) [22]. The modules initiator

8 For the unification algorithm used by Jason, we can simply consider the namespace
prefix as being part of the predicate symbol of the literal.

9 Plans are also scoped within a namespace given that their triggering events are based
on beliefs or goals.

124

and participant (Codes 5 and 6) encapsulate the functionality to start and
participate in a CNP, respectively. The multi-agent system is composed of the
initiator agents bob and alice, whose initial module code is presented in codes
1 and 2 respectively; and the participant company A and company B (Codes 3
and 4). In this implementation, every CNP instance takes place in a different
namespace to isolate the beliefs and events of each negotiation.

Agent bob statically loads the module initiator twice (lines 1-2) using the
directive include/2. This agent starts two CNP’s for tasks build(park) and
build(bridge) (initial goals in lines 4-5) in namespaces hall and comm. Each
goal is handled by the module instance loaded in the same namespace where the
goal is posted.

1 {include("initiator.asl",hall)}
2 {include("initiator.asl",comm)}
3

4 !hall:: startCNP(build(park)).
5 !comm:: startCNP(build(bridge)).
6

7

8

9

10

11

12

Code 1: bob.asl

1 !start([fix(tv),fix(pc),fix(oven)]).
2

3 +!start ([]).
4 +!start([fix(T)|R])
5 <- .include("initiator.asl",T);
6 .add_plan(
7 {+T:: winner(W)<-
8 .print("Winner to fix",T,"is",W)
9 });

10 // sub -goal with new focus
11 !!T:: startCNP(fix(T));
12 !start(R).

Code 2: alice.asl

Agent alice starts multiple CNP’s. It uses the internal action .include/2

for dynamically loading the module initiator. It starts one CNP for each task
in a given list of tasks (line 5). Agent alice extends the functionality provided by
the module initiator to print in the console the winner as soon as it is known.
Namely, it adds one plan to the same namespace where the module is loaded
(lines 6-9).

Agent company A participates in all CNPs. It loads the module participant
in every namespace where it listen that a CNP has started (note that the names-
pace in line 2 of code 3 is a variable). The agent customizes the module by adding
beliefs in the same namespace where the module is loaded (lines 3-4). The mod-
ule uses these beliefs to decide what tasks can be accepted and how much to bid
(cf. lines 6-7 of Code 6).

Agent company B plays participant only for CNPs started by agent bob,
and taking place in namespaces hall or comm. When a CNP starts under these
conditions, it loads the module participant in the corresponding namespace.
The beliefs in lines 8-9 and the plan added in lines 14-19 extend the functionality
of the module by setting the strategy for bidding and accepting tasks. This
company only accepts tasks for building and its bid depends on the namespace
in which the CNP is being carried on. Directive namespace/2 in line 1 defines the
local namespace supp. This namespace encapsulates the beliefs used to estimate
the final price of tasks (lines 2-5), so that they are inaccessible to other modules.

The initiator module provides functionality to start a CNP. It starts with
a forward declaration of the local namespace priv in line 1. The namespace

125

1 +N:: cnpStarted[source(A)]
2 <- .include("participant.asl", N);
3 +N::price(_,(3* math.random)+10);
4 +N:: acceptable(fix(_));
5 !N:: joinCNP[source(A)].
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Code 3: company A.asl

1 {begin namespace(supp ,local)}
2 price(bridge ,300).
3 price(park ,150).
4 gain(hall ,1.5).
5 gain(comm ,0.8).
6 {end}
7

8 hall:: acceptable(build(_)).
9 comm:: acceptable(build(_)).

10

11 +N:: cnpStarted[source(bob)]
12 : .member(N,[hall ,comm])
13 <- .include("participant.asl",N);
14 .add_plan ({
15 +?N:: price(build(T),P)
16 : supp::gain(N,G)
17 <- ?supp::price(T,M);
18 P=M*(1+G)
19 });
20 !N:: joinCNP[source(bob)].

Code 4: company B.asl

of startCNP (line 11) is abstract and a concrete namespace is given when the
module is loaded (cf. lines 1-2 and 5 of Codes 1 and 2, respectively). Because the
namespace given to startCNP is global (as defined by the loader), this module is
exporting the plan @p1. The identifiers without an explicit namespace between
lines 30 and 55 will be placed in the local namespace priv. This is used to
encapsulate the module’s internal functionality, so that the plans to carry out
contracts and announcements are only accessible from within this module (as
illustrated in the line 23). Similarly, the beliefs added to memorize the current
state of the CNP and the rule in lines 4-8 are private and will not interfere or
clash with any other belief of the agent. However, a loader module can retrieve
the current state of the CNP by means of plans @p2 and @p3. Figure 3 illustrates
the relation (imports and extends) between the modules alice and initiator

using the same notation of Figure 2.

alice.asl Initiator.asl

default::

+!start/0 <- …

priv::
all_proposal_received/0
state/1

+!contract/1 <- …
+!announce_result/2 <- …

refuse

+?cnp_state <- ...

+winner(W) <- … refuse

+!startCNP <- ...
+?cnp_state <- ...

+winner <- … propose/2
refuse

+?cnp_state <- ...

+winner(W) <- …

refuse
+winner <- … propose

refuse

+!startCNP <- ...
+?cnp_state <- ...

+winner <- …

oven::
Introducion/1
propose/2
refuse

+!startCNP(Task) <- ...

+?cnp_state <- ...

+winner(W) <- …

refuse

+?cnp_state <- ...

+winner(W) <- … refuse

+!startCNP <- ...
+?cnp_state <- ...

+winner <- … propose/2
refuse

+?cnp_state <- ...

+winner(W) <- …

refuse
+winner <- …

propose
refuse

+!startCNP <- ...
+?cnp_state <- ...

+winner <- …

pc::
Introducion/1
propose/2
refuse

+!startCNP(Task) <- ...

+?cnp_state <- ...

+winner(W) <- …

refuse

+?cnp_state <- ...

+winner(W) <- … refuse

+!startCNP <- ...
+?cnp_state <- ...

+winner <- … propose/2
refuse

+?cnp_state <- ...

+winner(W) <- …

refuse
+winner <- … propose

refuse

+!startCNP <- ...
+?cnp_state <- ...

+winner <- …

tv::
Introducion/1
propose/2
refuse/0

+!startCNP/1 <- ...

+?cnp_state/0 <- ...

+winner/1 <- …

Figure 3: The namespaces of agent alice during its execution.

126

1 {namespace(priv ,local)} // Forward definition
2

3 // operator :: forces a term to be considered in the abstract namespace
4 priv:: all_proposals_received
5 :- .count (:: introduction(participant)[source(_)],NP) &
6 .count (:: propose(_)[source(_)], NO) &
7 .count (:: refuse[source(_)], NR) &
8 NP = NO + NR. // participants = proposals + refusals
9

10 // starts a CNP
11 @p1 +! startCNP(Task)
12 <- .broadcast(tell, :: cnpStarted); // tell everyone a CNP has started
13 // this_ns is a reference to the namespace where this module is loaded
14 // in this example is the namespace where the CNP is being performed
15 .print("Waiting participants for task ",Task ," in ",this_ns ,"...");
16 .wait (3000); // wait participants introduction
17 +priv::state(propose); // remember the state of the CNP
18 .findall(A, :: introduction(participant)[source(A)], LP);
19 .print("Sending CFP for ",Task ," to ",LP);
20 .send(LP ,tell, ::cfp(Task)); //send call for proposals to participants
21 // wait until all proposals are received for a maximum 15secs
22 .wait(priv:: all_proposals_received , 15000,_);
23 !priv:: contract(this_ns).
24

25 // to let the agent to query the current state of the CNP
26 @p2 +? cnp_state(S) <- ?priv::state(S).
27 @p3 +? cnp_state(none).
28

29 {begin namespace(priv)}
30 //. intend(g) is true if the agent is currently intending !g
31 +! contract(Ns) : state(propose) & not .intend (:: contract(_))
32 <- -+state(contract); // updates the state of CNP
33 .findall(offer(Price ,A), Ns:: propose(Price)[source(A)], L);
34 .print("Offers in CNP taking place in ",Ns," are ",L);
35 L \== []; // constraint the plan execution to at least one offer
36 .min(L,offer(WOf ,WAg)); // sort offers , the first is the best
37 +Ns:: winner(WAg);
38 !announce_result(Ns,L);
39 -+state(finished).
40

41 // nothing todo , the current phase is not propose
42 +! contract(_).
43 -!contract(Ns)
44 <- .print("CNP taking place in ",Ns," has failed! None proposals");
45 -+state(finished).
46

47 +! announce_result(_,[]).
48 // announce to the winner
49 +! announce_result(Ns ,[offer(_,Ag)|T]) : Ns:: winner(Ag)
50 <- .send(Ag ,tell, Ns:: accept_proposal); // notify the winner
51 !announce_result(Ns,T).
52 // announce to others
53 +! announce_result(Ns ,[offer(_,Ag)|T])
54 <- .send(Ag ,tell, Ns:: reject_proposal);
55 !announce_result(Ns,T).
56 {end}

Code 5: initiator.asl

The participant module has a plan to join a CNP by sending an intro-
duction message to the agent playing initiator in the corresponding namespace.
When a call for proposals is received, an offer is sent back only if the task is
supposed to be accepted, otherwise the agent replies with a refuse message (lines
6-13). The accepted tasks and the amount to bid are not provided in the module
(lines 6, 7 and 13). They are meant to be defined by a loader module that can

127

extend every instance of this module to specify both tasks to be accepted and
the strategy for bidding (e.g. as in modules company A and company B).

1 // participating in CNP
2 +! joinCNP[source(A)]
3 <- .send(A,tell, :: introduction(participant)).
4

5 // Answer to Call For Proposal
6 +cfp(Task)[source(A)] : acceptable(Task)
7 <- ?price(Task ,Price);
8 .send(A,tell, :: propose(Price));
9 +participating(Task).

10

11 +cfp(Task)[source(A)] : not acceptable(Task)
12 <- .send(A,tell, :: refuse);
13 .println("Refusing proposal for task ", Task , " from Agent ", A).
14

15 // Answer to My Proposal
16 +accept_proposal : participating(Task)
17 <- .print("My proposal in ",this_ns ," for task ", Task ," won!").
18 // do the task and report to initiator
19 +reject_proposal : participating(Task)
20 <- .print("I lost CNP in ",this_ns ," for task ",Task ,".").

Code 6: participant.asl

6 Evaluation

We developed a non-modular version of the CNP to compare with the version
presented in Section 5. Then, we performed five extensions to both versions. The
first consists in modifying the vocabulary used by agents for communication. The
second modifies the protocol so that every agent specifies the limit of CNP’s in
which it is able to participate simultaneously. In the third, initiator agents set
a deadline for the call for proposals. The fourth adds one more agent playing
initiator and four participants with their own acceptable tasks and strategy to
bid. Finally, in the fifth only acceptable proposals are announced.

The comparison among the versions is shown in Table 2. The abbreviations
stand for: (num) extension number; (ags) number of agents; (I) number of agents
playing initiator; (P) number of agents playing participant; (eds) the number of
files edited; (m) modular version, i.e., developed using our approach; (n) non-
modular version; (adds) blocks of code added; (dels) blocks of code deleted;
(chgs) changes in a line of code. The size of the implementation was calculated
after compressing the source files with a zip utility. The initial size is given in
bytes, then a percentage representing the increment is given. The extensions are
progressive and each is compared against the previous.

For instance, to accomplish extension 2 of the modular version (starting from
extension 1), we added six blocks of code and changed two lines across a total
of four files, which increased the size of the system programs in 8.2% (i.e., 190
and 195 more bytes than initial implementation and extension 1, respectively)
when compared with its previous extension. To extend the corresponding non-
modular version, three files were edited to add twelve blocks of code and perform

128

num extension
ags eds size

updates

adds dels chgs

I P m n m n m n m n m n

initial implementation 2 3 - - 2359 2864 - - - - - -
1 update communication vocabulary 2 3 2 5 -0.5% 0.8% 0 0 0 0 15 37
2 participants set a limit of CNP’s 2 3 4 3 8.2% 7.0% 6 12 0 0 2 6
3 initiators set a deadline 2 3 3 2 2.1% 1.5% 3 4 0 0 1 2
4 add more participants 3 7 5 5 50.6% 85.9% 48 126 0 0 0 0
5 participants are not notified if lose 3 7 2 10 -1.3% -6.6% 0 0 2 10 0 0

total - - 16 25 59.1% 88.6% 57 142 2 10 18 45

Table 2: Comparison of the CNP across a series of extensions.

six changes in different lines, increasing the program size in 7% (i.e., 224 and
199 more bytes than initial implementation and extension 1, respectively). The
number of agents remained the same in both versions. Total row summarizes the
updates and the increase along all extensions of the system. If the same file had
to be edited during two different editions it is counted twice.

The results show that the modular version required a total of 77 updates
(57 additions, 2 deletions and 18 changes) against the non-modular for which
197 updates were necessary. In this particular case study we are reducing the
maintainability effort by 60% (120 updates less). We can conclude that a project
developed using our approach is easier to maintain.

This results can be analyzed in terms of the Don’t repeat yourself (DRY)
principle10. Our proposal enforces this principle since it represents a mechanism
to avoid the repetition of code in several parts of the system. In contrast to the
non-modular version, where every component implementing the functionality of
the protocol is repeated in the program of each agent, the higher the number
of participant agents (interested in different tasks and having distinct bidding
strategies) the greater the count of repetition occurrences. For instance, if some
change is performed in the protocol, even as simple as the way in which par-
ticipants introduce themselves, the change have to be propagated to the source
code of every agent participating in the CNP’s.

We made some initial effort in comparing with a version using the usual
include directive in previous releases of Jason, but for the chosen metrics and
example the difference to a version with no includes appeared negligible so we
kept the values for the latter. In future work we will consider other metrics and
examples where the difference to a version with the old include directive might
be more significant. In any case, it should be emphasized that clearly the old

10 A principle of software development with the purpose of reducing the repetition of
information [17], so that a modification of any single element of a system does not
require a change in other logically unrelated elements.

129

directive does not solve the problem of name collision nor supports information
hiding. For instance, if an agent tom already uses price/2 (e.g., to record the
prices for supplies), when it includes the source file implementing the CNP (using
an include without support for namespaces), since the belief price/2 is also used
by the CNP implementation to determine the bids, a name-collision arises and
the resulting behavior is unexpected11. For solving this, it is necessary either
to change the name of the belief used by tom to record the prices of supplies,
or that one used in the CNP implementation. Note that the latter alternative
implies updating every agent using the source file implementing the CNP.

The following section overviews how this proposal for modules addresses the
issues mentioned in Section 1; and highlight some of its properties, as well as
the major differences of our approach over related work mentioned in Section 2.

7 Discussion

The notion of namespaces adapted to the context of BDI-AOP languages is
suitable to address the main issues related to modularity. For instance, the
name-clashing problem is tackled by associating each component to a unique
namespace, enabling the programmer to write qualified names for disambiguat-
ing references to components.

The interface is provided through the concept of global namespace, which
supports both importing components and extending the functionality of mod-
ules. The notion of abstract namespace allows dynamic association of module
components to namespaces, thus the same module can be loaded several times
in different namespaces and also multiple modules can be loaded into the same
namespace to compose a more complex solution. The local namespaces permit
programmers to encapsulate components which among other things facilitates in-
dependent development of modules. Moreover, loading modules at runtime can
be seen as dynamic updating, i.e., the acquisition of new capabilities without
stopping its execution.

The main difference of our approach resides in the strategy adopted to achieve
modularity. On the one hand, the strategy in this paper consists in logically or-
ganizing component names in the agent’s mental state, by attaching additional
information to their identifiers. On the other hand, the approaches mentioned in
Section 2, in general, are based in mechanisms for dealing with multiple mental
states inside the agent, in which modules are active components of the opera-
tional semantics of the language, i.e., new transition rules are needed for handling
multiple belief bases, plan libraries and/or event queues in the same reasoning
cycle. The latter strategy leads to solutions that are more difficult to imple-
ment, in contrast to ours, which brings a syntactic level solution, so that it can
be implemented in any BDI language by simply extending their parsers.

11 This is also reported by N. Madden and B. Logan [20] from the experience of using
the usual include directive available in previous releases of Jason for the develop-
ment of a large-scale multi-agent system [19].

130

8 Conclusion

In this paper we have presented a solution for programming BDI Agents under
the principles of modularity, and we explored the assumption that the notion
of namespace is enough to address the main issues related to modularity, such
as avoiding name-collisions, following the information hiding principle and pro-
viding an interface. We have exemplified the properties and feasibility of the
approach using the Jason language.

It is future work to provide an unload mechanism that removes components
from modules that are no longer used by the agent. We also aim to implement the
approach in other languages to further evaluate the generality of the approach.

References

1. Rafael H. Bordini, Jomi F. Hübner, and Michael J. Wooldridge. Programming
Multi-Agent Systems in AgentSpeak using Jason. John Wiley & Sons, Ltd, 2007.

2. Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf. Extending the capa-
bility concept for flexible BDI agent modularization. In Proceedings of the Third
international conference on Programming Multi-Agent Systems, ProMAS’05, pages
139–155, Berlin, Heidelberg, 2006. Springer-Verlag.

3. Lars Braubach, Er Pokahr, and Winfried Lamersdorf. Jadex: A BDI agent system
combining middleware and reasoning. In Ch. of Software Agent-Based Applications,
Platforms and Development Kits, pages 143–168. Birkhaeuser, 2005.

4. Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin. Namespaces in
XML 1.0. W3C recommendation, W3C, August 2006. Published online on August
16th, 2006 at http://www.w3.org/TR/2006/REC-xml-names-20060816.

5. Paolo Busetta, Nicholas Howden, Ralph Rönnquist, and Andrew Hodgson. Struc-
turing BDI agents in functional clusters. In Nicholas R. Jennings and Yves
Lespérance, editors, Intelligent Agents VI, Agent Theories, Architectures, and Lan-
guages (ATAL), 6th International Workshop, ATAL 99, Orlando, Florida, USA,
July 15-17, 1999, Proceedings, volume 1757 of Lecture Notes in Computer Science,
pages 277–289. Springer, 1999.

6. Michal Cap, Mehdi Dastani, and Maaike Harbers. Belief/goal sharing BDI mod-
ules. In The 10th International Conference on Autonomous Agents and Multiagent
Systems - Volume 3, AAMAS ’11, pages 1201–1202, Richland, SC, 2011. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems.

7. Pedro Cuesta, Alma Gomez, and JuanCarlos Gonzalez. Agent oriented software
engineering. In Antonio Moreno and Juan Pavon, editors, Issues in Multi-Agent
Systems, Whitestein Series in Software Agent Technologies and Autonomic Com-
puting, pages 1–31. Birkhäuser Basel, 2008.

8. Bryan Logan Daniel Nicholas Kiss. Jason+ – extension of the jason agent program-
ming language. Technical report, School of Computer Science and Information
Technology, University of Nottingham, 2010.

9. Mehdi Dastani. 2APL: A practical agent programming language. Autonomous
Agents and Multi-Agent Systems, 16(3):214–248, June 2008.

10. Mehdi Dastani, Christian P. Mol, and Bas R. Steunebrink. Modularity in agent pro-
gramming languages an illustration in extended 2APL. In In the proceedings of The
11th Pacific Rim International Conference on Multi-Agents (PRIMA), Springer,
2009, pages 139–152. LNCS, 2009.

131

11. Mehdi Dastani and Bas Steunebrink. Modularity in BDI-based multi-agent pro-
gramming languages. In Proc. of the 2009 IEEE/WIC/ACM International Joint
Conference on Web Intelligence and Intelligent Agent Technology - Volume 02,
WI-IAT ’09, pages 581–584, Washington, USA, 2009. IEEE Computer Society.

12. Mehdi Dastani, Birna van Riemsdijk, Frank Dignum, and John-Jules Ch. Meyer.
A programming language for cognitive agents: Goal directed 3APL. In Mehdi Das-
tani, Jürgen Dix, and Amal El Fallah-Seghrouchni, editors, Programming Multi-
Agent Systems, volume 3067 of LNCS, pages 111–130. Springer, 2004. 1st Interna-
tional Workshop, PROMAS 2003, Melbourne, Australia, July 15, 2003.

13. Marie-Pierre Gleizes Federico Bergenti and Franco Zambonelli. Methodologies
and software engineering for agent systems. In Federico Bergenti, Marie-Pierre
Gleizes, and Franco Zambonelli, editors, The Agent-Oriented Software Engineering
Handbook, volume 11 of Multiagent Systems, Artificial Societies, and Simulated
Organizations, pages 4–10. Springer, 2004.

14. Ortiz-Hernández G., Guerra-Hernández A., and Hoyos-Rivera G. D. J. JasMo - a
modularization framework for Jason. IEEE, 12th Mexican International Conference
on Artificial Inteligence (MICAI). Mexico City, November 2013.

15. Koen Hindriks. Modules as policy-based intentions: modular agent programming
in GOAL. In Proc. of the 5th international conference on Programming multi-agent
systems, ProMAS’07, pages 156–171, Berlin, Heidelberg, 2008. Springer-Verlag.

16. N. Howden, R. Ronnquist, A. Hodgson, and A. Lucas. JACK intelligent agents -
summary of an agent infrastructure. In Proceedings of the 5th ACM International
Conference on Autonomous Agents, 2001.

17. Andrew Hunt and David Thomas. The Pragmatic Programmer: From Journeyman
to Master. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

18. Nicholas R. Jennings. Agent-oriented software engineering. In Ibrahim Imam, Yves
Kodratoff, Ayman El-Dessouki, and Moonis Ali, editors, Multiple Approaches to
Intelligent Systems, volume 1611 of Lecture Notes in Computer Science, pages 4–
10. Springer Berlin Heidelberg, 1999.

19. N. Madden and B. Logan. Collaborative narrative generation in persistent virtual
environments. In Intelligent Narrative Technologies: Papers from the 2007 AAAI
Fall Symposium, Menlo Park, CA, November 2007. AAAI Press.

20. Neil Madden and Brian Logan. Modularity and compositionality in Jason. In Lars
Braubach, Jean-Pierre Briot, and John Thangarajah, editors, Programming Multi-
Agent Systems: 7th International Workshop, ProMAS 2009, Budapest, Hungary,
May 10-15, 2009. Revised Selected Papers, volume LNAI 5919, pages 237–253,
Budapest, Hungary, 2010. Springer, Springer.

21. Anand S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable
language. In Proceedings of the 7th European workshop on Modelling autonomous
agents in a multi-agent world : agents breaking away, MAAMAW ’96, pages 42–55,
Secaucus, NJ, USA, 1996. Springer-Verlag New York, Inc.

22. R. G. Smith. The contract net protocol: High-level communication and control in
a distributed problem solver. IEEE Trans. Comp., 29(12):1104–1113, 1980.

23. M. Birna van Riemsdijk, Mehdi Dastani, John-Jules Ch. Meyer, and Frank S.
de Boer. Goal-oriented modularity in agent programming. In Proceedings of the
fifth international joint conference on Autonomous agents and multiagent systems,
AAMAS ’06, pages 1271–1278, New York, NY, USA, 2006. ACM.

132

ARGO: A CUSTOMIZED JASON
ARCHITECTURE FOR PROGRAMMING

EMBEDDED ROBOTIC AGENTS

Carlos Eduardo Pantoja1,4, Márcio Fernando Stabile Junior2, Nilson Mori
Lazarin1, and Jaime Simão Sichman3

1 Centro Federal de Educação Tecnológica (CEFET/RJ), Brazil
{pantoja, nilson.lazarin}@cefet-rj.br

2 Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, Brazil
mstabile@ime.usp.br

3 Escola Politécnica, Universidade de São Paulo, Brazil
jaime.sichman@poli.usp.br

4 Universidade Federal Fluminense, Brazil

Abstract. This paper presents ARGO, a customized Jason architecture
for programming embedded robotic agents using the Javino middleware
and perception filters. Jason is a well known agent-oriented programming
language that relies on the Belief-Desire-Intention model and implements
an AgentSpeak interpreter in Java. Javino is a middleware that enables
automated design of embedded agents using Jason and it is aimed to
be used in the robotics domain. However, when the number of percep-
tions increases, it may occur a bottleneck in the agent’s reasoning cycle
since an event is generated for each single perception processed. A pos-
sible solution to this problem is to apply perception filters, that reduce
the processing cost. Consequently, it is expected that the agent may
deliberate within a specific time limit. In order to evaluate ARGO’s per-
formance, we present some experiments using a ground vehicle platform
in a real-time collision scenario. We show that in certain cases the use of
perception filters is able to prevent collisions effectively.

1 Introduction

Agents are autonomous and pro-active entities situated in an environment and
are able to reason about what goal to achieve, based on its perceptions about
the world [19]. In robotics, an agent is a physical entity composed of hard-
ware, containing sensors and actuators, and software that is responsible for its
reasoning. The Belief-Desire-Intention model (BDI) [3] is a cognitive approach
for reasoning based on how information from the environment and the goals an
agent has can activate predefined plans in order to try to achieve these goals. Ja-
son [2] is an Agent-Oriented Programming Language (AOPL) that implements
an AgentSpeak interpreter in Java, adopting the BDI cognitive architecture.
However, programming robotic agents using Jason is a difficult task because a

133

2

bottleneck can occur in the agent’s reasoning cycle when the robot updates its
belief base with perceptual information.

Javino [11] is a middleware that enables automated design of embedded
agents using Jason. It allows agents to communicate with microcontrollers in
hardware devices, e.g. Arduino. Both Javino and Jason can run embedded in a
single-board computer such as Raspberry Pi (connected with n devices). How-
ever, when using several sensors, the agent’s belief base generates events for each
perception, which may compromise the robot execution time. In [17], perception
filters were used to minimize the cost effects of processing all perceptions in sim-
ulation systems using Jason. The results showed that filters are able to improve
agent’s performance significantly.

Thus, in this paper, we present a customized Jason architecture for program-
ming embedded robotic agents named ARGO5, which uses a layered robot ar-
chitecture separating the hardware from the reasoning agency. In ARGO, Javino
enables processing data coming from sensors as perceptions in ARGO’s agent
reasoning cycle. Then, one can restrict the list of perceptions delivered by Javino
based on filters designed by the agent’s programmer. The main contribution of
ARGO is to enable the use of perception filters for programming robotic agents,
which reduces the cost of processing perceptions in BDI. Moreover, ARGO al-
lows an agent to decide when to start or to stop perceiving, to fix the interval
between each perception and to control the perceptual behavior by using Jason
internal actions to filter perceptions at runtime.

In order to evaluate ARGO’s performance, we also present some experiments
using a ground vehicle platform in a real-time collision scenario constructed. We
applied the experimental design methodology described by [10] to test and to
statistically verify that in certain cases the use of perception filters reduces BDI
processing time, thus preventing collisions effectively.

The rest of the paper is structured as follows. We briefly present in section
2 the Jason framework (subsection 2.1), the Javino middleware’s structure and
functionality (subsection 2.2) and then explain how we can construct embedded
robotic agents with these frameworks (subsection 2.3). In the sequence, percep-
tion filters are discussed in section 3. In this moment, we are able to present
ARGO architecture and its implementation in section 4. Our experiments are
presented in section 5, where we define the case study, the experimental design
and show our results. In section 6, we discuss related work. Finally, in section 7
we present our conclusions and further research directions.

2 Programming BDI agents

2.1 Jason

Jason [2] is an interpreter for an extended version of AgentSpeak [14], which is
an abstract AOPL based on a restricted first-order language with events and
actions. Created to allow the specification of BDI agents, Jason implements the

5 Download available at http://argo-for-jason.sourceforge.net.

134

3

operational semantics of AgentSpeak and provides a platform for the develop-
ment of multi-agent systems.

A Jason agent operates by means of a reasoning cycle that is analogous to
the BDI decision loop [2]. First, the agent receives a list of literals representing
the current state of the environment. Then, the belief base is updated based
on the perceptions received. Each change in the belief base generates an event
that is added to a list to be used in a posterior step. The interpreter checks for
messages that might have been delivered to the agent’s mailbox. These messages
go through a selection process to determine whether they can be accepted by the
agent or not. After that, one of the generated events is chosen to be dealt with
and when it is selected, all the plans related to that event are selected. From these
plans, a new selection is made to separate which of them can be executed given
the current state of the environment. If more than one plan can be executed, a
function selects which one will be executed. If the agent has many different foci
of attention, a function chooses one intention among those for execution. The
final step is to execute the first non-executed action from the selected intention.

2.2 Javino

Javino is a library for both hardware and software that implements a protocol
for exchanging messages between the low-level hardware (microcontrollers) and
the high-level software (programming language) with error detection over serial
communication [11]. There are some communicating libraries in the literature,
such as RxTx Library and JavaComm, based on serial ports. However, these li-
braries do not provide error detection and they use byte-to-byte communication.
In both cases, the programmer needs to implement a message controller on the
hardware layer in order to avoid losses.

The format of a message used in a communication by Javino is composed of
3 fields: preamble, size and message content. The preamble (2 bytes) identifies
the beginning of a new message that arrived through a serial port. The size field
(1 byte) is calculated before any transmission informing the size of the message.
The field message content (up to 255 bytes) carries the message that has to be
sent.

Both the preamble and size fields identify errors in case of loss or collision
of information during the message transmission. When a message arrives on
the serial port, the receiver (either software-side or hardware-side) verifies the
preamble. If it is correct, the receiver then counts the size of the message content
field and compares it with the value of size field: if they don’t match, the message
is discarded. In the case of incomplete messages, the receiver also discards the
message. Javino provides three different operation modes:

– the Send Mode assumes a simplex message transmission by software to hard-
ware. It uses the sendCommand(port, msg) method to send a message to the
hardware-side. This method returns a boolean value which gives a feedback
about the successful transmission to the microcontroller. This feedback is

135

4

necessary because the port serial can be locked by other concurrent trans-
missions. The software-side do not wait for answers from the hardware;

– the Request Mode assumes a half-duplex transmission between software to
hardware, where the hardware sends an answer message. It uses the request-
Data(port, msg) method, that sends a message to the hardware-side through
a serial port and returns a boolean value which checks if there is any answer
sent by the hardware-side. The user is supposed to implement an answer
message in the hardware-side using the availableMsg() method, that verifies
if it exists a valid message from software-side, the getMsg() method, that
gets the message sent by software-side and the sendMsg(msg) method, that
sends a message to software-side;

– the Listen Mode assumes a simplex transmission by hardware to software. It
uses the listenHardware(port) method to check if there is any message sent
by the hardware-side. The Request and Listen modes get messages from
hardware using the getData() method.

The Javino’s protocol aims to be multi-platform and can be implemented
using any programming language. The hardware-side library may be used in
microcontrollers such as ATMEGA, PIC or Intel families. The software-side li-
brary may be coded in Java or in another programming language. In [11], it
was developed a Java library for the software-side and an Arduino library for
hardware-side. In this case, Javino requires both Python and pySerial installed
to manage the serial port of an operational system.

2.3 Embedding robotic agents

Some previous research have tried to integrate robotic reasoning into hardware
by using BDI agents. In [7], a framework was presented to provide a way of pro-
gramming agents using AgentSpeak in Unmanned Aerial Vehicle in a simulator.
The authors in [4] proposed an aquatic robot which uses Arduino together with
BeagleBoard who could move from point-to-point deviating from obstacles. How-
ever, the reasoning was centralized on a computer using a Wi-Fi communication
with the robot. All the decisions were sent to BeagleBoard and retransmitted,
by serial communication, to Arduino, which held sensors and actuators. An-
other work published in [1] presented a grounded vehicle, which used Arduino
and Jason to control sensors and actuators using a Java library for communica-
tion between the hardware and the Jason’s environment. However, the agent’s
reasoning was still running on the computer. The messages to the hardware-
side were sent from an Arduino connected to a USB port computer to another
Arduino embedded on the robot using radio transmitters.

The work in [16] showed that it was possible to use BDI agents on embedded
systems employing single-board computers. However, it was not presented an
infrastructure to integrate BDI agents in a robot. Therefore, they simulated the
environment on a computer to execute the decisions taken by the BDI agent.

Finally, a robotic agent platform using both Javino and Jason framework
was presented in [11], which was an improvement of the platform presented in

136

5

[1]. The authors used Raspberry Pi and Arduino together to provide a fully em-
bedded BDI agent reasoning on a robot. In this case, Javino was integrated into
the agent’s simulated environment and the agent used a Jason external action to
request the perceptions and a Jason internal action to control the actuators. In
this architecture, the agent is responsible for controlling both sensors and actu-
ators that are connected to the Arduino board and it is embedded in Raspberry
Pi. The Arduino boards are connected to the USB ports of Raspberry Pi, thus,
the agents use Javino to get perceptions from sensors and act with the actua-
tors plugged in Arduino. The architecture worked in embedded robotic agents.
However, according to the authors, when using too many sensors or plans in
Jason code the agent’s reasoning suffered a delay due to the cost of processing
perceptions in Jason. We believe that using filters to overcome this issue could
reduce the time employed in perceptions processing in BDI.

3 Perception filters in Jason

In order to identify the critical points for performance in the Jason reasoning
cycle, the work in [17] used a profiling tool to analyze a piece of Jason code.
By measuring memory and CPU usage, the authors verified that two sections of
the code were more time-consuming: the Belief Update Function (BUF) and the
method responsible for the unification of variables in the plans and rules. These
two methods generated a bottleneck, and depending on the specification of the
agent, those methods could take up to 99% of reasoning time.

Given that Jason’s default implementation assumes that everything that an
agent can perceive in the environment will be part of its perception list, they
proposed the inclusion of a perception filter between the perceive function and
the update of beliefs before starting the reasoning cycle. This filter is responsible
for analyzing the perception list received and for removing from the list those
literals that are not interesting for the agent. This is done through filters de-
fined by the agent designer which are described in XML format files and define
restrictions on the predicate, variables and annotations of the beliefs.

Let us suppose a robotic agent that represents his beliefs about the environ-
ment by predicates like p(d, v), where predicate p identifies the sensor, d the side
of the robot where the sensor is located and v the value acquired by perception.
An example of perception list would be:

temperature(right,36)

temperature(back,38)

light(left,143)

distance(front,227)

distance(right,30)

An example of filter that is used in the experiments section 5.1 is shown
below. This filter would remove all the perceptions originated from the temper-
ature and light sensors and would also remove the perceptions from the distance
sensors that are not in the front of the robot.

137

6

<?xml version="1.0"?>

<PerceptionFilter>

<filter>

<predicate>temperature</predicate>

</filter>

<filter>

<predicate>light</predicate>

</filter>

<filter>

<predicate>distance</predicate>

<parameter operator="NE" id="0"> front </parameter>

</filter>

</PerceptionFilter>

Since the agent’s intentions may change, the perceptions that are relevant
for the agent may also change. To reflect these changes, a new Jason internal
action called change filter was also proposed in [17]. This action receives as a
parameter the name of an XML file with the specific rules for the perceptions,
and sets it as the current filter so that in the next reasoning cycle, the agent
receives perceptions according to its new interests.

4 ARGO

In this section, we present ARGO, a customized architecture that employs both
Javino middleware and perception filters for programming embedded robotic
agents using the Jason framework. Javino provides a bridge between the intelli-
gent agent and the robot’s sensors and actuators while perception filters act by
blocking specific perceptions coming from Javino. Furthermore, we also present
a layered architecture for constructing cognitive robots.

4.1 Overview of a Robot’s Architecture using Javino

A robotic agent is an embedded system where software and hardware components
are integrated to provide sensing and operating abilities in real-time environ-
ments. For this, it is necessary to employ an architecture capable of facilitating
the robot construction and programming. Hence, we propose an architecture for
programming robotic agents where it is possible to design the robot platform
independently from the reasoning agency, and then to integrate them using a
protocol for serial communication.

The robot platform must be composed of sensors and actuators coupled to
microcontrollers, where all the desired actions that the robot can perform in
the environment and the percepts it can capture from sensors are programmed.
In this case, our architecture translates raw data into a format for high-level
programming language in the firmware, resulting in a performance gain for the
agent’s reasoning. Javino’s protocol is responsible for sending these percepts
using the serial port of the microcontroller. In this architecture, it is possible

138

7

to use any kind of microcontrollers whereas it employs a library compliant with
Javino’s protocol. Afterwards, a MAS programming language is employed to
allow the cognitive control of the robot platform. The chosen program language
should be able to host the existing versions of Javino’s protocol or to implement
a new one. An overview of the architecture is shown in Figure 1.

The architecture is composed of three layers: hardware, firmware and reason-
ing. The hardware layer is responsible for mounting the robot platform, sensors,
actuators and connecting them with respective microcontrollers employed. A
single-board computer is used to connect all microcontrollers using USB and
will be responsible for hosting the MAS. The firmware layer provides all actions
that a robot can execute including procedures for both sensors and actuators
and they are programmed directly in the microcontroller. Basically, these pro-
cedures send prepared raw data as percepts for the reasoning layer and receive
agent’s messages to perform some action, both using serial communication and
the hardware-side of Javino’s protocol.

Fig. 1. Overview of a robot’s architecture using Javino.

The reasoning layer represents the MAS’s programming using a high-level
language. The middleware in software-side transmits received percepts from se-
rial port to the agent and sends action messages to the firmware layer. Depending
on the AOPL chosen, it is possible to integrate received percepts directly into
the agent’s reasoning cycle or to use some structure to control the perception
flow. As the architecture allows many microcontrollers in a robot platform, a
strategy for capturing those percepts should be implemented. For example, it is
possible to read all available serial ports one by one and after that to update the
agent’s percepts or to allow the agent decide which serial port it desires to use
at a particular moment. Note that an agent cannot access more than one serial

139

8

port at a time and more than one agent cannot access the same serial port at
the same time.

In most of the commercial platforms, programmers do not have access to
implementation details or they have to use an interface as a middleware for
controlling the robot; on the other hand, these platforms also present a suite of
functions to help in robot motion and planning. Our approach aims to be an
architecture for open robot design to be used in cases where the programmer
needs freedom to build his own prototype, using open platforms such as Arduino.
The architecture is not bound neither to the MAS programming language, which
can be interchanged, nor to the hardware adopted. However, it is necessary to
adjust the raw data translation to percepts in the firmware layer, if the AOPL
is changed.

4.2 ARGO

In the reasoning layer of our proposed robot architecture, it is necessary to
adopt an AOPL which will be responsible for the cognitive reasoning of the
robot platform. For this, we propose a customized Jason’s architecture named
ARGO employing perceptions filters and Javino integrated into Jason’s agent’s
reasoning cycle.

ARGO aims to be a practical architecture for programming automated em-
bedded agents using BDI agents in the robotics domain. An ARGO agent is able
to directly control the actuators at runtime and it receives perceptions from the
sensors automatically within a pre-defined time interval. It is also able to change
its filters at runtime based on its needs (the same can occur when accessing its
devices). The BDI in Jason implies a high cost of processing the perceptions since
for each one of the received literals an event is generated. In complex codes, plans
may be added in running time, and a quite large intention stack is generated. In
these cases, if the robotic agent has to achieve a goal within a time limit, it may
not succeed. Our idea is to apply perception filters in these cases, so as to enable
the agent to deliberate in time, in order to act in such critical applications. An
overview of ARGO can be seen in Figure 2.

An agent can assume to be an ARGO agent by defining the Argo architec-
ture in the MAS design; otherwise, the standard agent architecture of Jason is
automatically defined. An ARGO agent is supposed to connect to one or more
devices at runtime by choosing which serial port it wants to access (until the
limit of 127 serial ports); however it can only use one port at a time, for both
sensing and acting. Besides that, different ARGO agents must not use the same
serial port at the same time, because when exists a competition for communicat-
ing at the same port, there is data loss. An ARGO agent is able to communicate
with others common Jason Agents, but only ARGO agents can control devices
and receive percepts from the environment. In this case, ARGO agents send the
received percepts and can delegate for Jason agents the reasoning about these
perceptions if it is desirable. Once the agent has received percepts, it can filter
them based on its actual configuration.

140

9

Fig. 2. ARGO overview.

4.3 Internal actions

An ARGO agent can also decide when to perceive the real world at runtime.
It means that the agent can start and stop perceiving from sensors when it is
desirable. Similarly, it can also directly control the actuators by using internal
actions. The Argo architecture also provides ways of filtering perceptions by
using a specific internal action, where it is defined the name of an XML file
that holds the perceptions conditions. So, we propose five internal actions for
programming agents in Jason along with Argo architecture:

1. limit(x): defines the sensing interval, where x is a value in milliseconds;
2. port(y): defines which serial port should be used by the agent, where y is

a literal representing the port identification, e.g. COM8;
3. percepts(open—block): decides whether or not to perceive the real world;
4. act(w): sends to the hardware an action, represented by literal w, to be

executed by a microcontroller;
5. change filter(filterName): defines the filter to constrain perceptions in

runtime, where filterName is the name of the XML file containing the filter
constraints.

4.4 Customizing Jason for ARGO

In Jason’s reasoning cycle, as mentioned in section 2.1, the agent gets its percepts
from the simulated environment provided by Jason. We extended the reasoning
cycle of Jason, shown in Figure 3, to providing a customized architecture for
ARGO agents. First, Javino middleware is now responsible for getting percepts
coming from low-level layers and sends them to the perceive step. Before being
incorporated in the belief base, percepts can be filtered based on the agent’s
active filter. Then, filtered perceptions are processed and the reasoning cycle
flows up to the act step, where the agent can perform basic Jason’s actions or
an action to control the actuators of the robot, which once more involves Javino
middleware.

141

10

In order to create ARGO architecture, it was necessary to customize Jason
framework, in particular by extending the AgArch class. This class is responsible
for the Jason’s native architecture and provides a list of perceptions sent by the
Jason’s environment in Java and the communication with other agents [2]. In
the extended architecture, Javino middleware was inserted as a communication
bridge to the hardware sensors and actuators. Besides that, the serial port iden-
tification had to be added to the native AgArch class in order to define to which
serial port the Javino has to communicate.

Fig. 3. ARGO reasoning cycle.

In the TransitionSystem class, two new attributes blocked and limit were
created, as well as a new function realWorldPerceptions. The blocked attribute
is responsible for blocking or unblocking the perceptions and the limit attribute
specifies a time interval for perceiving the real world (data from sensors). The
realWorldPerceptions verifies in each cycle (i) if the percepts are blocked; or (ii)
if the time limit for the next perception has been reached. If the percepts are
not blocked and the time limit was reached, Javino requests the percepts from
sensors and sends them to the perceive method in Agent class.

Before the agent processes the percepts coming from Javino, they can be
filtered using the method filter also implemented in the Agent class. In this
case, all agents have the ability to filter percepts, because this method was
implemented in the native Agent class. The modifications executed do not change
Jason’s original functionality, except for the simulated environment which is not
used since Javino gets the percepts from the real world. We opted for creating a
customized architecture instead of an infrastructure because the later one obliges
all agents to be ARGO agents.

142

11

5 Experiments

5.1 Case study

In order to evaluate the overall architecture and to assure the impact of the
perception filter, we assembled a robot composed of four distance sensors, four
light sensors, four temperature sensors, an Arduino board and an Arduino 4wd
chassis. A sensor of each type was placed in each of the four sides of the robot
(front, back, right and left). The robot was placed on a flat surface two meters
away from a wall. When started, the robot would perceive the environment and
move forward at a constant speed6 until the distance to the wall was less than a
specified value. As soon as it perceived that the distance was smaller, the robot
should stop. The robot can be seen in Figure 4.

Fig. 4. The robot used in the experiments.

5.2 Experiment design

The experiment presented was designed based on the experimental design guide-
lines presented in [10]. According to the author, the goal of a proper experimen-
tal design is to obtain the maximum information with the minimum number of
experiments. The procedure separates the effects of various factors that might
affect the performance and allows to determine if a factor has a significant effect
or if the observed difference is simply due to random variations caused by mea-
surement errors and/or parameters that were not controlled. It is important to
define the meaning of four terms:

1. Response Variable is the outcome of an experiment. In the experiments ex-
ecuted, the response variables are the processing time taken by the agent to
stop after perceiving the wall and the distance it stopped from the wall;

2. Factors are the variables that affect the action response variable. Factors can
be Primary or Secondary. Primary factors are those whose effects need to

6 The speed is about 10 cm/s and it is not used in the experiments since it is constant.

143

12

be quantified while secondary factors are those that impact the performance
but whose impact we are not interested in quantifying. The primary factors
chosen for this experiments were the distance the agent should stop from the
wall, the time interval for receiving the perceptions and the filter used;

3. Levels are the values that a factor can assume. The factors and levels used
are presented in Table 1;

4. Replication is the repetition of all or some experiments. If all experiments in
a study are repeated three times, the study is said to have three replications.

Factor Levels

Distance 40 cm 80 cm 120 cm

Perception interval 20 ms 35 ms 50 ms

Filter No filter Front Side Front Distance
Table 1. Factors and levels used for the experiment

The three filter levels represent the filter configurations that were used. “No
filter” represents that the ARGO architecture did not make use of the perception
filters, “Front Side” represents that the filter removed all the perceptions, except
the ones from the sensors present on the front side of the robot. “Front Distance”
represents that the filter removed all the perceptions, except the ones from the
distance sensor present on the front side of the robot. Three executions were
conducted for every combination of levels in Table 1.

5.3 Results

The first response variable analyzed was the distance the agent stopped from the
wall. Figure 5 shows the results of all possible value combinations of the different
factors presented in Table 1. Bars that do not appear in the Figure mean that
the agent collided with the wall.

One should notice initially that in all cases, the agent that didn’t filter its
perceptions collided with the wall (there is no any blue bar in the Figure). In
some cases, for instance, the experiment for distance 120 cm, the agent with front
side filter arrived eventually to stop before the wall (with perception intervals
20 and 35), but always closer to the wall when compared to the agent that
used front distance filtering. This agent outperformed the others in quite all the
experiments, and it was able to successfully stop before hitting the wall in all
the experiments when the distance limit was 80 cm or 120 cm. However, in some
experiments (for example, distance 40 cm and perception interval 50), neither
agent could avoid the collision.

The second response variable analyzed was the time taken by the agent to
stop after perceiving the wall. For this experiment, we calculated the variation
assigned to each factor, as detailed in [10]. This statistical analysis is useful to

144

13

Fig. 5. Distance to the wall after stopping.

Factor Variation attributed

Distance Limit (L) 1,415%

Perception Interval (I) 0,165%

Filter (F) 88,965%

Interaction between L and I 0,525%

Interaction between L and F 3,715%

Interaction between I and F 0,265%

Interaction between L and I and F 1,725%

Error 3,28 5%
Table 2. Variation assigned to each factor in the analysis of the response time.

check which one of the factors is being responsible for the differences in the
response variable. The calculated values are presented in Table 2.

The results confirm the importance of the filter in reducing the processing
time since almost all variation was attributed to it. This result suggests that
ARGO architecture, by integrating Javino and the perception filters, can be
used for developing embedded robotic agents in a way that the agent can benefit
from the BDI architecture with a smaller influence of one of its major drawbacks
that would be the high processing time.

6 Related Work

Robot architectures deal with platforms, sensors, actuators, programming lan-
guage and reasoning mechanisms. One challenge is how to integrate these com-
ponents in a way that a robot can deliberate to perform a task without failing
to accomplish its goal. In [18] it is proposed a cognitive control architecture inte-
grating knowledge representation of sensory and cognitive reasoning of a robotic
agent using GOAL. The architecture consists of four decoupled layers: robot plat-
form, robot behavioral control, environment interface and cognitive control. The

145

14

robot platform employed was the humanoid NAO and it used URBI as middle-
ware for interfacing with the robot’s hardware via TCP/IP protocol. The robot
behavioral control layer is responsible for processing sensory data and monitor-
ing and executing behaviors. Besides, this layer communicates (using TCP/IP)
with the reasoning and the robot platform layer, transmitting sensory data and
actions execution respectively. The interface layer uses a translation mechanism
between the sensory information acquired from the behavioral layer and the per-
cepts sent to the cognitive layer. This layer is necessary because symbolic and
sub-symbolic information can use different languages. The mechanism is based
on a standard template using XML files mapping, which indicates how to map
data but also when to do it. The cognitive control layer uses GOAL [8], which
is a logic-based programming language for cognitive agents.

Similarly, ARGO’s architecture also divides the robot programming into lay-
ers, separating sensory data from the agent’s reasoning. We exploit the advan-
tages of Jason extending it for programming robotic agents. ARGO provides
three layers to be programmed: hardware, firmware and agent reasoning. Our
proposed architecture provides a support for exchanging the hardware and the
firmware without concerning with reasoning layer; furthermore, it is possible to
change the agent programming language without changing either the hardware
or the firmware. This is possible because Javino is responsible for exchanging
serial messages between these layers, and it does not link them to each other.
We do not provide a translation mechanism in high-level layers because of the
processing cost, which can affect the robot efficiency. However, the translation
from raw data into percepts is done in the firmware layer. Since ARGO aims to
be used in open platforms, the programmer must code the firmware layer. For
commercial platforms such as NAO and Lego Mindstorms, a percepts mapping
process must be provided.

Some other works also use Jason for this end, such as [13] and [12]. In [13],
CArtAgO [15] is used as the functional layer for providing artifacts that represent
sensors and actuators of a robot, and Jason is used as the reasoning layer. Despite
using artifacts, which is an interesting abstraction for the devices employed, the
authors use a simulator named Webots and do not embed the MAS. [12] provides
a Jason extension for ROS named Rason.

Javino’s protocol provides a mechanism for avoiding noisy data in communi-
cation between the firmware and the reasoning layer. However, we do not treat
noisy data coming directly from sensors, when they provide well-formed but
wrong values. In [6], it is presented a programming language for cognitive robots
and software agents using 3APL [9] language, which implements a deliberation
cycle for selecting and executing practical reasoning rule statements and goal
statements. It also provides an architecture consisting of beliefs, goals, actions
and practical reasoning rules as a mental state. The beliefs represent the robots
percepts of an environment. The authors focused only on the programming con-
structs, they do not provide information about how a robot platform should
interact with the high-level language.

146

15

In [5], it is presented a Teleo-Reactive (TR) extension for programming
robots, supported by a double tower architecture which provides a percepts
handler that atomically updates the BeliefStore (a repository of beliefs). Af-
ter that, it reconsiders all rules affected by this change. The authors assert that
actions and percepts can be dispatched through ROS interface to the robot plat-
form. TR extension uses low-level procedures written in procedural programming
languages for sensorial data and actuators actions. It was used Qu-Prolog, sim-
ulators and Lego Mindstorms robots.

ARGO has the same intention of facilitating the programming of robotic
agents providing a mechanism for automatically updating the agents belief base.
The TR extension provides an inhibition process of some behaviors in response
to percepts while ARGO provides a runtime process for filtering percepts that
are not needed at a specific moment. Filtering perceptions in ARGO prevents
unnecessary event triggering in the deliberative cycle of Jason, therefore, the
agent deliberation should be more efficient.

7 Conclusions and further work

This paper presented ARGO, an architecture for programming embedded robotic
agents using Jason framework, which uses the Javino middleware for exchang-
ing serial messages through a serial port and perceptions filters. Javino allows a
mechanism for perceiving from sensors and process these perceptions directly in
the agents’ reasoning cycle. When many perceptions are processed, Jason gener-
ates a stack of events that delays the decision in real-time situations. Perceptions
filters proved to be a solution to overcome this situation.

In the experiments, we show that applying the perception filter together with
Javino reduces the time of processing perceptions significantly in Jason. In a real-
time collision scenario, where the agent had to reason and stop before colliding
with an obstacle placed at 120cm, 80cm and 40cm, the experiment showed there
only by using the perception filters the agent was able to stop before colliding.
The ARGO architecture aims to provide programming structures that allow
coding robotic agents using Jason. It means that an agent can decide when to
act and to perceive at runtime. Furthermore, it is able to change perceptions
filters based on its needs, and to decide what device it will be connected to at a
certain time during its execution.

For future work, we intend to extend ARGO architecture for programming
multi-robot systems through a communication protocol between robotic agents.
Moreover, it is necessary to test ARGO in different domains and apply robotics
technics such as SLAM. We will also intend to provide other hardware-side
libraries, for instance for PIC and Intel families.

Acknowledgments

Márcio F. Stabile Jr. is financed by CNPq. Carlos Pantoja is financed by CAPES.
Jaime Simão Sichman is partially financed by CNPq, proc.303950/2013-7.

147

16

References

1. Barros, R.S., Heringer, V.H., Lazarin, N.M., Pantoja, C.E., Moraes, L.M.: An
agent-oriented ground vehicles automation using Jason framework. In: 6th Inter-
national Conference on Agents and Artificial Intelligence. pp. 261–266 (2014)

2. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley & Sons Ltd (2007)

3. Bratman, M.E.: Intention, Plans and Practical Reasoning. Cambridge Press (1987)
4. Calce, A., Forooshani, P.M., Speers, A., Watters, K., Young, T., Jenkin, M.R.:

Autonomous aquatic agents. In: ICAART (1). pp. 372–375 (2013)
5. Clark, K., Robinson, P.: Robotic agent programming in TeleoR. In: Robotics and

Automation, 2015 IEEE International Conference on. pp. 5040–5047 (2015)
6. Dastani, M., de Boer, F., Dignum, F., Van Der Hoek, W., Kroese, M., Meyer, J.J.,

et al.: Programming the deliberation cycle of cognitive robots. In: Proc. of the 3rd
International Cognitive Robotics Workshop (2002)

7. Hama, M.T.: Uma plataforma orientada a agentes para o desenvolvimento de soft-
ware em véıculos aéreos não-tripulados. Master’s thesis, Universidade Federal do
Rio Grande do Sul, Porto Alegre, Brazil (2012)

8. Hindriks, K.V.: Programming rational agents in GOAL. In: Seghrouchni, A., Dix,
J., Dastani, M., Bordini, H.R. (eds.) Multi-Agent Programming: Languages, Tools
and Applications, pp. 119–157. Springer US, Boston, MA (2009)

9. Hindriks, K.V., De Boer, F.S., Van der Hoek, W., Meyer, J.J.C.: Agent program-
ming in 3APL. Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

10. Jain, R.: Art of Computer Systems Performance Analysis: Techniques For Exper-
imental Design Measurements Simulation and Modeling. Wiley (2015)

11. Lazarin, N.M., Pantoja, C.E.: A robotic-agent platform for embedding software
agents using raspberry pi and arduino boards. In: 9th Software Agents, Environ-
ments and Applications School (2015)

12. Morais, M., Meneguzzi, F., Bordini, R., Amory, A.: Distributed fault diagnosis
for multiple mobile robots using an agent programming language. In: Advanced
Robotics (ICAR), 2015 International Conference on. pp. 395–400 (2015)

13. Mordenti, A., Ricci, A., Santi, D.I.A.: Programming robots with an agent-oriented
bdi-based control architecture: Explorations using the jaca and webots platforms.
Bologna, Italy, Tech. Rep (2012)

14. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: de Velde, W.V., Perram, J.W. (eds.) Proceedings of the 7th European workshop
on Modelling autonomous agents in a multi-agent world (MAAMAW’96). Lecture
Notes in Artificial Intelligence, vol. 1038, pp. 42–55. Springer-Verlag, USA (1996)

15. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in
CArtAgO. In: Seghrouchni, A., Dix, J., Dastani, M., Bordini, H.R. (eds.) Multi-
Agent Programming: Languages, Tools and Applications, pp. 259–288. Springer
US, Boston, MA (2009)

16. Santos, F.R., Hübner, J.F., Becker, L.B.: Concepção e análise de um modelo de
agente BDI voltado para o planejamento de rota em um VANT. In: 9th Software
Agents, Environments and Applications School (2015)

17. Stabile Jr., M.F., Sichman, J.S.: Evaluating perception filters in BDI Jason agents.
In: 4th Brazilian Conference on Intelligent Systems (BRACIS) (2015)

18. Wei, C., Hindriks, K.V.: An agent-based cognitive robot architecture. In: Dastani,
M., Hübner, J.F., Logan, B. (eds.) Programming Multi-Agent Systems: 10th Inter-
national Workshop, ProMAS, Valencia, Spain, pp. 54–71. Springer, Berlin (2013)

19. Wooldridge, M.J.: Reasoning about rational agents. MIT press (2000)

148

A Multi-Agent Solution for the Deployment of
Distributed Applications in Ambient Systems

Ferdinand Piette1,2, Costin Caval1, Cédric Dinont2, Amal El Fallah
Seghrouchni1, and Patrick Tailliert1

1 Sorbonne Universités, UPMC Univ Paris 06, LIP6 – Paris – France
2 Institut Supérieur de l’Électronique et du Numérique – Lille – France

Abstract. In this paper, we present a multi-agent solution for the con-
figuration, deployment and monitoring of distributed applications in the
context of Ambient Intelligence (AmI). We describe the use of goal-driven
agents and show how the agent organisation allows for the privacy of the
infrastructure resources to be enhanced. We illustrate the functioning
of the resulting multi-agent system (MAS) through a video doorkeeper
in a smart environment scenario, in which a distributed application is
deployed several times in different contexts. The agents collaborate to
find the right hardware entities in the environment, taking into account
the context.

Keywords: Applicative paper, Multi-agent system, Ambient Intelligence, Goal-
driven agents, Agent design, Privacy management, Deployment

1 Deployment of Smart Applications

AmI research focuses on the improvement of human interactions with smart
applications [12]. These improvements are made possible by the proposal of
frameworks and platforms that facilitate the development of context-aware and
dynamic applications. These platforms offer mechanisms to build such applica-
tions by handling data and events [16, 19] or by wrapping hardware and software
capabilities into agents [9, 13]. However, it is often assumed that an underlying
interoperable hardware and energy infrastructure already exists [24]. Meanwhile,
the Internet of Things (IoT) aims to provide a global infrastructure for the in-
formation society, enabling advanced services by interconnecting physical and
virtual “things” based on existing and evolving interoperable information and
communication technologies [18]. The main challenge of the IoT is to achieve full
interoperability of interconnected devices while guaranteeing the trust, privacy
and security of communications [4]. However, a gap exists between AmI and the
IoT. Indeed, because of the heterogeneity of such systems, it is difficult to have
horizontal communication between connected devices. Present applications use
devices that are vertically connected, from the device to an external server that
collects and processes the data. The available commercial products are usually
not directly interoperable. Moreover, this approach raises privacy questions: the

149

2

user does not own his data any more and privacy cannot be guaranteed that
way. Hence, to fill this gap between IoT and AmI applications, adequate deploy-
ment mechanisms are required. We addressed the deployment problem in [25]
by proposing to model the available hardware infrastructure and the needs of
the applications using graphs that describe the various entities, their relations
and properties. For deploying an application on the infrastructure, we proposed
an extended graph matching algorithm for finding the hardware entities of the
infrastructure that fulfil the requirements of the distributed application. How-
ever, this solution was centralised, which makes it unsuitable for real systems
that need to take into consideration, among others, privacy and scalability. To
address these issues, we propose a multi-agent-based distributed deployment
software. Through its modularity, the multi-agent paradigm facilitates the lo-
cal processing of data and guarantees the autonomy of the different parts of
the hardware infrastructure, thus enhancing the privacy and robustness of the
software.

This paper is organised as follows. Section 2 presents a scenario that illus-
trates the deployment of applications. Then, in Sec. 3 we explain why multi-agent
systems are well-adapted to design the deployment software and ensure privacy
and we detail this multi-agent structure. Section 4 presents our implementation
using a goal-oriented approach. Section 5 shows similar works that use agents
for the deployment of applications and privacy management. We conclude by
presenting the next steps of this work.

2 Scenario

The scenario we use in this paper highlights both the dynamic deployment of dis-
tributed applications and the privacy management encapsulated in both agents
and agent organisations. Mr Snow uses a video doorkeeper for dependant per-
sons (e.g. visually impaired) application in his home. When someone rings at the
door, the image of the entrance camera is displayed on a screen near Mr Snow,
making sure he can properly see the person. He can then discuss with the person
and decide whether or not to remotely open the door.

It is Saturday morning and Mr Snow is waiting for a parcel that will be
delivered to his home at any time. While he is grooming himself in the bathroom,
his neighbour, Mr Den, rings the door. The smart house, aware that Mr Snow
is in his bathroom, selects the connected mirror of the bathroom, instead of
any of the other display screens of the house, as a support to display the image
stream of the entrance camera. Mr Snow, not being able to receive his guest,
informs him, thanks to the microphone in the mirror, that he will meet him in
an hour. After getting ready, Mr Snow goes to his neighbour. In the middle of
their conversation, he is notified that an unkonwn man rings at his door again.
He tries to recognise with his neighbour by displaying the image on Mr Den’s
television. By default, Mr Snow does not have the right to use any devices that
he does not own, but the Mr Den has authorised him to access the television
when he is at home. The doorkeeper application is redeployed dynamically to

150

3

use the requested hardware entities. Neither Mr Snow nor his neighbour know
the visitor. Mr Snow decides to activate the microphone of the camera which
allows him to learn that the unknown person is the expected transporter, which
he can now go and see in person.

The important point in this scenario is not the video doorkeeper application,
but the way it is deployed dynamically in the environment, considering the user’s
context. The scenario shows two deployment situations: (1) the application was
deployed for use in the user’s own home infrastructure, but in a less usual place:
the bathroom; (2) the application was deployed on the infrastructure of another
user, as the necessary access rights had been granted.

To achieve the deployment of any applications on an existing hardware in-
frastructure and to handle privacy constraints, we use the MAS features. The
next section presents why MAS paradigm is suitable for our purpose.

3 Multi-Agent Modelling

Our scenario highlights several necessary specificities of the deployment software.
This software has to dynamically deploy and undeploy distributed AmI applica-
tions in an environment that is also dynamic: when a visitor rings the doorbell,
the deployment of the video doorkeeper should start, considering the available
hardware entities and the location of the user, in order to choose the most rele-
vant screen for displaying the image of the camera. Given its the distribution and
openness that characterize the AmI domain, privacy is a very important char-
acteristic of the deployment software. Privacy is defined by Alan Westin [32]
as the claim of individuals, groups or institutions to determine for themselves
when, how and to what extent information about them is communicated. In this
scenario, we focus on resource privacy. Mr Snow is the owner of the hardware
entities in his house and he does not want that unauthorised persons use or even
know of the existence of these resources. At last, autonomy and robustness of
the system are also very important specificities: if my neighbour’s system failed,
mine should continue to work normally and should not be impacted.

As the required software demands distribution, privacy, context management,
autonomy and robustness, we identified MAS as a suitable solution. Through its
modularity, this paradigm facilitates a local processing of the data and guar-
antees the autonomy of the different parts of the hardware infrastructure, thus
handling aspects of privacy and robustness. To solve the dynamic deployment
problem, we use the graph representation for the hardware infrastructure from
our previous work [25]. Nodes represent hardware entities or relations between
these entities and properties can be attached to each node. The requirements
of the deployable applications are also described using such graphs. A graph
matching algorithm can then be used on the available infrastructure graph to
find the entities that can support the running of the application.

In the next sub-sections, we present the modelling of agents and the agent
organisation for our deployment solution, while focusing on the encapsulation of
resource privacy.

151

4

3.1 Agents and Artifacts

The deployment software involves the user deploying applications on an infras-
tructure. Three types of agent were therefore defined to represent and clearly
separate each of the parties in handling the deployment: User Agent, Application
Agent and Infrastructure Agent. A fourth type of agent was introduced for en-
hancing resource privacy: the Infrastructure Super Agent. For each type of agent
we identified the main goals, that will then be described in Sec. 4:

– An Infrastructure Agent deals with a part of the global hardware infrastruc-
ture. It uses the graph representation of this available infrastructure [25]
(hardware entities, relations and properties). This graph representation is
never shared with other agents. The Infrastructure Agent reasons on it to
propose partial solutions for the deployment of applications, thanks to a
graph-matching algorithm. This class of agent has several goals, as it has to:
(1) keep the infrastructure graph up to date; (2) propose solutions for the
deployment of applications, considering the available hardware infrastruc-
ture, but also the sharing and privacy policy and (3) deploy or (4) undeploy
functionalities of an application.

– An Infrastructure Super Agent is a representative of a set of Infrastructure
Agents which are related to it forming a group. It acts as a proxy between
the agents inside and outside of the group.

– An Application Agent manages an entire application during its runtime. It
has a graph-based description of the application [25]. An example of such
graph is represented in Fig. 1: the upper part represents the functionalities
of the application and the bottom part shows their hardware requirements.
The main goals of this class of agent are: (1) guarantee the consistency of the
application and (2) deploy or (3) undeploy functionalities of the application if
necessary. The Application Agent has to interact with several Infrastructure
Agents in order to deploy the functionalities of the application over the
infrastructure.

– At last, the User Agent is the interface between the user and the other agents
of the deployment software. Through this agent, a user can request the (1)
deployment or (2) undeployment of applications.

In addition to these four classes of agent, we also propose two classes of
artifact which are resources and tools that can be instantiated and/or used by
agents in order to interact with the environment [27]:

– Deployment artifacts [14] can be used by the Infrastructure Agents in order
to effectively deploy some parts of an application, or configure hardware
entities so that they can be used by the application.

– The second class of artifact are the functionalities of the applications them-
selves. Some of them can provide useful contextual information to the de-
ployment software (location of a user, available bandwidth, ...), to help the
agents keeping their application or infrastructure graph up to date.

152

5

#1: Camera

framerate≥10

#r1: has

#2: CommDevice

#r2: communicatesWith

bandwidth = #1.framerate × #1.imageSize

#3: CommDevice

#4: Computer

#r3: has #r4: runsOn

#5: OS

OSType=Linux

F1

uses

F2

deploys .. on Software

datastream

Fig. 1. Example of a basic application graph

In the video doorkeeper scenario, there are three Infrastructure Agents. The
first one manages the hardware entities located in the living room of Mr Snow,
like the television. The second one manages the entities of the bathroom like
the connected mirror. And the last one manages the house of the neighbour. We
also find two Application Agents. The first one manages the video doorkeeper
application; when a visitor rings the doorbell, this Application Agent triggers the
deployment of the video interaction functionality. The second one manages the
application which provides the location of the Mr Snow inside his own house to
his own Infrastructure Agents. The contextual location information is useful for
deploying other applications. Indeed, the display screen of the video doorkeeper
application has to be chosen near the user. Then, we have two User Agents. The
first one is the interface between the deployment software and Mr Snow, and the
second one is owned by Mr Snow’s neighbour. At last, we have a certain number
of deployment artifacts that can configure the display screens, the cameras, or
deploy software on devices (TV box, connected mirror etc.).

The agent decomposition encapsulates a part of the privacy mechanism. In-
deed, the graph representation of the available hardware infrastructure managed
by an Infrastructure Agent is only known by this agent and is never shared with
others. Moreover, the architecture used helps keeping a clear separation between
the applicative part, managed by the Application Agents, and the hardware part,
monitored by the Infrastructure Agents. As agents only have a local view of the
system, the privacy is enhanced. In the next sub-section, we show how using this
agent organisation improves resource privacy and allows the definition of privacy
policies for the use of these resources.

153

6

3.2 Organisation and Interactions

Mr Snow’s
house

infrastructure
super agent

Living room
infrastructure

agent

Bathroom
infrastructure

agent

Mr Den’s
house

infrastructure
(super) agent

Mr Den
user agent

Mr Snow
user agent

Doorkeeper
app. agent

Location
app. agent

authorised as:

regular user

owned by

owned by

authorised as:

guest

authorised as:

regular user

Fig. 2. Agent organisation

The agents presented in the previous section are constrained by the organisa-
tional structure and follow the privacy policy given by the owner. Infrastructure
Agents can be grouped behind an Infrastructure Super Agent which, as stated
before, acts as a proxy for the agents of the group. From an outside view, this
Infrastructure Super Agent is seen as a normal Infrastructure Agent.

In our scenario, the living room and the bathroom Infrastructure Agents of
Mr Snow are grouped behind an Infrastructure Super Agent representing the
house of Mr Snow. Similarly, the Infrastructure Agent managing the house of
Mr Snow’s neighbour is a super agent, regrouping several Infrastructure Agents
(or other sub-super agents). The advantage of such organisation is that it is easy
to abstract groups of agents and make them invisible from the outside, result-
ing in a multi-scale organisation that helps improve privacy. Indeed, Mr Snow
knows about his own Infrastructure Agents (bathroom and living room), but he
does not have to know anything about the details of Mr Den’s infrastructure
organisation. If he wants to interact with his neighbour’s house, he has to in-
teract with Mr Den’s Infrastructure Super Agent with the required access rights
granted (as described below). The upper part of Fig. 2 shows the organisation of
the Infrastructure Agent from Mr Snow’s point of view. This kind of organisation
can be implemented with both a hierarchy or a holarchy [17]. In a hierarchical
organisation [15], Super Agents are represented by a software agent that acts
as a proxy between the agents of the group and the outside. This agent is the

154

7

favoured interface between the group and the outside. In a holarchy [20], a super
agent is not a concrete software agent but is represented by the sum of all In-
frastructure Agents of the group. Each of these agents can be a representative of
the super agent, unlike in a hierarchy where there is only one representative that
may become a single point of failure. A holarchy is more complex to implement,
but it is also more flexible and can evolve dynamically. Some sophisticated hier-
archies are similar to holonic organisations [17]. In our implementation, we used
hierarchies because they are easier to implement and debug, but both models
could have been implemented.

The organisation of Infrastructure Agents ensures privacy by hiding informa-
tion about the structure of its sub-organisations. However, to improve privacy by
controlling the use of resources, we also propose sharing policies. User Agents can
be authorised, by the owner of some hardware infrastructure, to use some parts
of its infrastructure, and cooperate with the associated Infrastructure Agents or
Super Agents, to deploy applications. If a User Agent is not authorised by the
Infrastructure (Super) Agent, it cannot use the hardware resources proposed by
this agent. Otherwise, it can have different authorisation levels. For example:
(1) Administrator level: the agent (and implicitly its user) has full access to the
resources proposed by the Infrastructure Agent, can reconfigure the Super Agent
organisation and manage the authorisation levels; (2) Regular user: the agent
has access to the resources of the Infrastructure (Super) Agent but it cannot
reconfigure authorisation levels or agent organisation and (3) Guest: the agent
has a restricted access to the resources. Only the resources considered as non
critical by an administrator are allowed to be shared. These authorisation levels
are not limited to three and can be modified by the administrator of the Super
Agent. In the video doorkeeper scenario, Mr Snow’s User Agent is a Regular user
for his home Infrastructure Super Agent, but it is just a Guest to his neighbour’s
home Infrastructure Super Agent. As such, it has only access to the television
of Mr Snow’s neighbour. This allows to ensure privacy of the other resources of
Mr Den. The Application Agents have the same authorisation level as the User
Agent that creates them. They can interact with the authorised Infrastructure
Agents in order to effectively deploy their application. Figure 2 shows the agent
structure of the doorkeeper scenario; the agent organisation, the authorisation
level, and the Application Agents that are bounded to their User Agent creator.

In this section, we have shown how privacy is preserved through encapsulation
in our MAS. Infrastructure Agents keep the information about the hardware
infrastructure secret. The Infrastructure Agent hierarchy keeps the details of the
agent organisation hidden. Privacy policies can allow or prevent the sharing of
resources to User Agents. This results in privacy by design. In the next section,
we present how we designed and implemented the MAS using a goal-driven
approach.

155

8

4 Design and Implementation

The agents were designed using a goal-based model due to its benefits to the au-
tonomy and robustness of the application. Goals are specified by describing their
associated plans: higher level goal plans describing relationships between goals
and lower level action plans for concrete actions. This goal-based representation
is based on the Goal-Plan Separation (GPS) approach [8], where each agent has
a main goal plan (i.e. plan without any actions, so only decisions, perceptions
and goal adoptions) that describes the top level behaviour, which can be pur-
sued using other goal plans or directly action plans (i.e. plan without any goal
adoptions). This approach helps handle agent complexity through a multi-level
description, from top level abstract behaviours with goals to concrete action
plans. Using goal-plans also has the advantage of specifying the relationships
between goals in a plan format.

. . .

W Wait
for events

. . .
Ei

. . .
Ej

. . .

Decision

. . .
casei

. . .
casej

. . .

Perform
action(s)

. . .

. . .

begin ForEach
. . .

end ForEach

.

G
Adopt goal
and wait for
outcome

. . .
F

. . .
S

. . .

G
Adopt goal

in parallel with
current plan

. . .

Fig. 3. Flowchart nodes for efficiently describing the plans of goal-driven agents

Plans are represented using a flowchart notation we adapted for modelling
goal-driven agents (Fig. 3). The notation contains the main elements that allow
for the behaviours of agents to be defined: decisions, event perceptions (wait), ac-
tions and goal adoptions. Parallel executions are launched when adopting goals.
For this application, we considered a simple goal model (similar to a perform
goal [7]) where a goal is successful (“S”) when the plan executing for it ends
with “End ok”. This allowed us to keep a simple goal life-cycle appropriate for
using in our application, while still benefiting from the features of the goal-based
design.

We continue by describing in detail the agents of the system. Since the In-
frastructure Super Agent is only a proxy between the agents of the group it
represents and the other agents outside this group, its implementation is not
detailed here. In what follows, PXi−j are the plans for a goal GXi.

156

9

Begin main goal plan U

Wrequest(new app,
App)

request(delete app,
App)

GU1(App)

handle
application
deployment

GU2(App)

handle
application

undeployment

Fig. 4. User Agent : main goal plan

Begin main goal plan A

GA1(f0)
have

functionality
f0 working

GA2

have
app. messages

handled

End ok

Fig. 5. Application Agent : main goal plan

4.1 User Agent

The User Agent acts as an interface between the user and the deployment MAS.
The goal plan of the User Agent (Fig. 4) waits for user input and, depending
on the received request, adopts the necessary goal, corresponding to the agent
functions identified in Sec. 3.1. The plans of GU2 and GU1 are similar: they
create an Application Agent or request an application to be undeployed, wait
for a confirmation and display the information to the user. The User Agent also
allows the changing of the privacy policies, but this was not represented here.

4.2 Application Agent

The Application Agent is created by a User Agent. It tries to deploy a precise ap-
plication by cooperating with one or more known Infrastructure (Super) Agents,
from which it does not need to have any infrastructure details.

Begin PA1−1(f)

GA3(f): obtain
projection solution

GA4(f): have functionality
deployed

F

GA5(f)
maintain

functionality
coherence

End ok

S

S

End error

F

Fig. 6. Application Agent : goal plan for
GA1: “have functionality f working”

Begin PA2−1

Wevent(deploy, f) event(undeploy, f)

GA1(f)

have
functionality
f working

GA6(f)

have
functionality
undeployed

Fig. 7. Application Agent : goal plan for
GA2: “have app. messages handled”

Upon its creation, an Application Agent adopts two goals (Fig. 5): GA1 for
deploying an initial functionality (Fig. 6) and GA2 that waits for internal events
for new deployments or undeployments (Fig. 7). The deployment is done in two

157

10

Begin PA3−1(f)

Send msg(A,
request(projection, f))

W
partial(Solution)

End ok

complete(Solution)

End error

timeout

∃ another known
Infrastructure Agent A

End error

else

Fig. 8. Application Agent : plan for
GA3: “obtain projection solution”

Begin PA5−1(f)

Wapp. msg. M infrastructure inconsistency

Process M

ForEach event E,

E ∈ L < (deploy, F) >∪L < (undeploy, F) >

Emit E

End ok

event(kill, this)

Emit
event(deploy, this)

End error

Fig. 9. Application Agent : plan for GA5:
“maintain functionality coherence”

steps: first the agent obtains a deployment solution from Infrastructure Agents
via GA3 and then it requests the deployment according to this solution through
GA4. The Application Agent sends a list of the requirements described in the
application graph to the Infrastructure Agent and the solution it receives con-
tains the list of requirements that could be fulfilled. Note that the reply does not
contain any actual infrastructure details, which is important for the privacy of
the infrastructure. It can be seen (Fig. 8) that the agent may need to call mul-
tiple Infrastructure Agents in order to obtain a complete deployment solution.
Indeed an Infrastructure Agent tries to find in its own infrastructure the hard-
ware entities that match the requirements of the application. However, if these
requirements only partially match, the Infrastructure Agent will return a partial
solution to the Application Agent. In this case, the latter will call another Infras-
tructure Agent that will continue to match the requirements of the application.
Once a solution has been found, the Application Agent interacts again with the
concerned Infrastructure Agents to effectively deploy the functionalities of the
application: plan PA4−1 simply sends a message and waits for a confirmation.

After a functionality was deployed, the agent monitors it through GA5 (with
its plan in Fig. 9) in order to adapt the deployment to the current context:
infrastructure inconsistency (e.g. changing infrastructure availability, changing
user location) and messages from the application itself (e.g. new guest at the
door). An application message can result in multiple requests for deployments
and undeployments. Internal events are used to control the execution of different
plans. Deploy and undeploy events originate in the plan for GA5 and trigger the
adoption of GA1 for the deployment of other functionalities or redeployment of
the current one, and GA6 for the undeployment of the functionality. As each
functionality is monitored by an instance of GA5, in case of an undeployment,
the plan of GA6 signals the corresponding GA5 to stop through a kill event
(besides sending a request message to the corresponding Infrastructure Agent).

158

11

Note here that the Application Agents only handle the application deploy-
ment. The application itself is in charge of its own actions, data and privacy.

4.3 Infrastructure Agent

An Infrastructure Agent receives requests from Application Agents that it tries to
satisfy (Fig. 10). Only requests originating from known User Agents are treated,
in other words only applications from agents that were granted one of the levels
of authorisation are accepted.

Begin main goal plan I

GI1

keep
infrastructure graph

up to date

Wrequest(solution, f) request(undeploy, f)

GI2(f)

have
application
projection
solution

GI3(f)

have
application
functionality

deployed

request(deploy, f)

GI4(f)

have
application

functionality
undeployed

Fig. 10. Infrastructure Agent : main goal plan

Begin PI2−1(f)

Use graph matching algorithm

Send
msg(Inquirer, complete(Solution))

End ok

complete(Solution)

Send
msg(Inquirer, partial(Solution))

End ok

else

Send
msg(A, request(projection, f))

W
complete(Solution)

partial(Solution)
timeout

∃ agent A ∈ same group that can help

partial(Solution)

Fig. 11. Infrastructure Agent : plan for GI2: “have application projection solution”.
“Inquirer” can be an Application Agent or another Infrastructure Agent.

When it receives a request for a deployment solution, the Infrastructure Agent
uses the graph matching algorithm to determine if it can fulfil the requirements
of the request (Fig. 11) using the devices it manages. The algorithm takes into

159

12

consideration the levels of authorisation of the involved User Agents. If it cannot
produce a complete solution, the Infrastructure Agent requests the help of other
agents in its group, but without informing the Application Agents. In this way,
the components of the infrastructure remain private. If a complete solution is
eventually produced and the Infrastructure Agent is given the order to deploy
the application, it will dispatch the deployment tasks to its own deployment
artifacts as well as to any other Infrastructure Agents that were included in the
final solution. In case any of these requests fails (e.g. an artifact malfunctions),
the whole application is undeployed and the Application Agent is informed, which
will cause it to restart the deployment procedure.

In parallel with the request handling, the agent also adopts GI1 which listens
for agent and artifact information in order to manage the graph the devices
corresponding to the Infrastructure Agent. In case of an inconsistency (e.g. Mr
Snow leaves Mr Den’s home, so any display he used there are no longer relevant
for the application), the agent informs the Application Agents that it will need
to redeploy the concerned parts of their applications.

4.4 Implementation

A demonstration model of the deployment software has been developed in an
apartment replica attached to our laboratory. This home replica implements
various scenarios applied to home care for dependent persons, including the pre-
sented scenario. These scenarios are using commercial connected devices tweaked
to be horizontally connected, thanks to the deployment software. These demon-
strations run continuously and can be tested by any visitor.

Our goal is to run the MAS on different devices like smartphones or em-
bedded systems with few resources. Most of existing regular MAS platforms like
Jade for instance are memory-consuming and Java-oriented platforms [21]. They
are not suitable for our purpose. That is why we designed our own MAS platform
in JavaScript. Indeed, web technologies are fully interoperable and the agents
can easily be run on devices like smartphones or the Raspberry Pi. Visualisation
and interfaces are also JavaScript web applications. The agents embed a moni-
toring and debugging web server that proposes interfaces for interacting with it.
The effective deployment is handled by deployment artifacts. The demonstration
model handles ssh and puppet artifacts in order to deploy and run software on
UNIX systems (computers, micro-computers, Unix-based devices etc.). We also
implemented a specific deployment artifact that configures the frame rate of IP
cameras. In this implementation we mostly used IP devices. We also integrated
EnOcean devices. These devices, however, are handled by a hard-coded gateway
that extends the IP network to EnOcean devices. Next stage will be to handle
multiple means of communication by automatically deploying gateways or prox-
ies between the devices when needed. At last, the agent implementation was,
in first place, not obvious. The multi-level GPS approach made it intuitive to
develop.

This realisation helps us to figure out the difficulties of handling the hetero-
geneity of hardware entities. We are now able to handle applications through an

160

13

AppStore for Smart Homes. These applications can be automatically deployed
in a real environment, using the available hardware devices, and including mech-
anisms to ensure privacy management of the resources. This provides a concrete
base for the implementation of a complete middleware for the deployment of
distributed applications in a smart environment.

5 Related Work

Several works address the deployment problem. Braubach and al. [6] propose a
deployment reference model based on a MAS architecture (e.g. agent services)
for deploying MAS applications. As an agent is a software entity, the deployment
of agents does not have to deal with the high heterogeneity of hardware enti-
ties. Some other works in the service-oriented architectures (SOA) community
[3] reason on deployment patterns, that specify the structure and constraints of
composite solutions on the infrastructure, in order to compose services. Contrary
to our approach, the cited paper refers not to the localisation of resources and
installation of software, but rather to the binding of existing resources in order
to provide the desired composition of services. This is realised using a centralised
graph-matching algorithm that takes into account the various requirements for
the given service. Flissi and al. [14] propose a meta-model for abstracting the
concepts of the deployment of software over a grid. All these works have short-
comings when considering their use for deploying AmI applications on the IoT
infrastructure. Some do not take into consideration the heterogeneity of the
hardware and software, as well as the interaction between the two layers (i.e.
software and hardware). Others do not tackle the privacy problem. And some
propose centralised solutions that are not scalable for real life AmI applications.
Our MAS approach takes these problems into consideration: scalability is han-
dled thanks to the agent structure; the autonomy of agents, organisation and
privacy policies provide resource privacy; and heterogeneity is supported by the
description of the system and the reasoning mechanisms that find projections of
applications on the infrastructure.

Privacy in multi-agent systems has already been well explored. Such and al.
[29] categorise research on data privacy on different levels: collection, disclosure,
processing and dissemination. Multi-agent system specificities have been used
to propose different manners of handling the data privacy. Some works focus
on norms [5, 22] and privacy policies [30, 11, 31], checked by agent brokers to
control the disclosure of the data. Other works [26, 28] use social relationships
like trust, intimacy or reputation to select the agents with which data can be
shared. Trusted third parties are already used in [23, 1, 10] in order to anonymise
the data or the metadata (e.g. IP address, receiver or sender identity), and also
to check disclosure authorisations. At last, some works [2] focus on integrating
secure communication in the agent platforms by using well known encryption
protocols. All these works use MAS in order to provide data privacy. In our
work, as explained in Sec. 3, we merely take advantage of MAS properties to
handle the privacy of the hardware resources and of the structure of the system.

161

14

6 Conclusion and Future Work

In this paper, we presented a multi-agent solution for reasoning on the dynamic
deployment of distributed applications in ambient systems. We described the
modelling of the system and presented the specifications of the goal-based agents.
We illustrated the MAS using a context-aware video doorkeeper scenario. In this
scenario, a doorkeeper application is dynamically deployed in order to route the
video stream of the entrance hall camera to a relevant screen, near the user,
thanks to contextual information about his location. Other scenarios are possible
using the apartment replica we used.

The MAS proposed in this paper contains four classes of goal-directed agent
to handle a clear separation between the hardware and software layers and to
ensure resource privacy in ambient systems. In order to preserve the privacy of
the resources, the graph models of the infrastructure are handled locally by the
concerned agents. The matching between the requirements of the application
functionalities and the hardware entities is performed using a decentralised ver-
sion of an existing graph-matching algorithm adapted to the graph formalism
we use.

The use of MAS made it possible to introduce privacy measures at architec-
ture and organisation level, on top of which we were able to add a user-defined
privacy policy mechanism. This was an important criterion for the choice of the
agent paradigm since in the domain of Ambient Intelligence there are often dif-
ferent infrastructure owners that need to ensure the privacy of their resources.
The separation between the applicative and the infrastructure layers, together
with the decentralised approach also enhance the robustness of the solution.
The clearly delimited entities, with either virtual (the applications) or physical
(users, infrastructure elements) correspondents, guided the agentification. The
use of a goal-based representation for agents together with the Goal-Plan Sep-
aration approach facilitated the modelling task. The specific plan notation was
efficient in describing the agent plans both during design and for presentation
purposes.

In terms of future work, for the deployment software, data privacy in the
deployed applications should also be taken into consideration in addition to the
resource privacy discussed here. We would like to facilitate the local processing
and storage of the data by defining data privacy policies which should be fa-
cilitated by the modularity of the MAS. The user should decide which kind of
data he authorises to come out of his home infrastructure. This would impact
the reasoning on the deployment: the hardware entities would have to be filtered
with respect to this new data privacy policy. In the interest of the engineer-
ing of multi-agent systems, we are studying the goal-based modelling approach
with GPS agents and the plan notation for the extension towards a development
methodology for robust software.

162

15

References

1. Aı̈meur, E., Brassard, G., Fernandez, J.M., Onana, F.S.M.: Privacy-preserving
demographic filtering. In: Proceedings of the 2006 ACM Symposium on Applied
Computing. pp. 872–878. SAC ’06, ACM, New York, NY, USA (2006)

2. Alberola, J., Such, J., Garcia-Fornes, A., Espinosa, A., Botti, V.: A performance
evaluation of three multiagent platforms. Artificial Intelligence Review 34(2), 145–
176 (2010)

3. Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A., Totok, A.: Automatic
realization of soa deployment patterns in distributed environments. In: Bouguet-
taya, A., Krueger, I., Margaria, T. (eds.) Service-Oriented Computing ICSOC
2008, Lecture Notes in Computer Science, vol. 5364, pp. 162–179. Springer Berlin
Heidelberg (2008)

4. Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer
Networks 54(15), 2787 – 2805 (2010)

5. Barth, A., Datta, A., Mitchell, J., Nissenbaum, H.: Privacy and contextual in-
tegrity: framework and applications. In: Security and Privacy, 2006 IEEE Sympo-
sium on. pp. 15 pp.–198 (May 2006)

6. Braubach, L., Pokahr, A., Bade, D., Krempels, K.H., Lamersdorf, W.: Deployment
of distributed multi-agent systems. In: Gleizes, M.P., Omicini, A., Zambonelli, F.
(eds.) Engineering Societies in the Agents World V, Lecture Notes in Computer
Science, vol. 3451, pp. 261–276. Springer Berlin Heidelberg (2005)

7. Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal Representation for BDI
Agent Systems. In: Bordini, R., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) Programming Multi-Agent Systems, LNCS, vol. 3346, pp. 44–65. Springer
Berlin Heidelberg (2005)

8. Caval, C., El Fallah Seghrouchni, A., Taillibert, P.: Keeping a clear separation
between goals and plans. In: Dalpiaz, F., Dix, J., van Riemsdijk, M. (eds.) Engi-
neering Multi-Agent Systems, Lecture Notes in Computer Science, vol. 8758, pp.
15–39. Springer International Publishing (2014)

9. Chen, H., Finin, T.W., Joshi, A., Kagal, L., Perich, F., 0001, D.C.: Intelligent
agents meet the semantic web in smart spaces. IEEE Internet Computing 8(6),
69–79 (2004)

10. Cissée, R., Albayrak, S.: An agent-based approach for privacy-preserving recom-
mender systems. In: Proceedings of the 6th International Joint Conference on Au-
tonomous Agents and Multiagent Systems. pp. 182:1–182:8. AAMAS ’07, ACM,
New York, NY, USA (2007)

11. Crépin, L., Demazeau, Y., Boissier, O., Jacquenet, F.: Sensitive Data Transaction
in Hippocratic Multi-Agent Systems. In: Engineering Societies in the Agents World
IX, pp. 85–101. Lecture Notes in Computer Science, Springer Berlin / Heidelberg
(2009)

12. Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.: Scenarios
for ambient intelligence in 2010 (2001)

13. El Fallah Seghrouchni, A., Olaru, A., Nguyen, N.T.T., Salomone, D.: Ao dai: Agent
oriented design for ambient intelligence. In: Desai, N., Liu, A., Winikoff, M. (eds.)
PRIMA. Lecture Notes in Computer Science, vol. 7057, pp. 259–269. Springer
(2010)

14. Flissi, A., Dubus, J., Dolet, N., Merle, P.: Deploying on the grid with deployware.
In: Cluster Computing and the Grid, 2008. CCGRID ’08. 8th IEEE International
Symposium on. pp. 177–184 (May 2008)

163

16

15. Fox, M.S.: An organizational view of distributed systems. IEEE Transactions on
Systems, Man, and Cybernetics 11(1), 70 – 80 (1981)

16. Hellenschmidt, M., Kirste, T.: A generic topology for ambient intelligence. In:
Markopoulos, P., Eggen, B., Aarts, E.H.L., Crowley, J.L. (eds.) EUSAI. Lecture
Notes in Computer Science, vol. 3295, pp. 112–123. Springer (2004)

17. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl.
Eng. Rev. 19(4), 281–316 (Dec 2004)

18. ITU-T: Overview of the internet of things, recommendations (2012)
19. Johanson, B., Fox, A., Winograd, T.: The interactive workspaces project: Experi-

ences with ubiquitous computing rooms. IEEE Pervasive Computing 1(2) (2002)
20. Koestler, A.: The Ghost in the Machine. Hutchinson (1967)
21. Kravari, K., Bassiliades, N.: A survey of agent platforms. Journal of Artificial

Societies and Social Simulation 18(1), 11 (2015)
22. Krupa, Y., Vercouter, L.: Contextual integrity and privacy enforcing norms for vir-

tual communities. In: Boissier, O., El Fallah Seghrouchni, A., Hassas, S., Maudet,
N. (eds.) MALLOW. CEUR Workshop Proceedings, vol. 627. CEUR-WS.org
(2010)

23. Menczer, F., Street, W., Vishwakarma, N., Monge, A., Jakobsson, M.: IntelliSh-
opper: A proactive, personal, private shopping assistant. In: Proc. 1st ACM Int.
Joint Conf. on Autonomous Agents and MultiAgent Systems (AAMAS) (2002)

24. O’Hare, G.M.P., Collier, R., Dragone, M., O’Grady, M.J., Muldoon, C., de J. Mon-
toya, A.: Embedding agents within ambient intelligent applications. In: Bosse, T.
(ed.) Agents and Ambient Intelligence, Ambient Intelligence and Smart Environ-
ments, vol. 12, pp. 119–133. IOS Press (2012)

25. Piette, F., Dinont, C., El Fallah Seghrouchni, A., Taillibert, P.: Deployment and
configuration of applications for ambient systems. Procedia Computer Science 52,
373 – 380 (2015), the 6th International Conference on Ambient Systems, Networks
and Technologies (ANT-2015)

26. Ramchurn, S.D., Huynh, D., Jennings, N.R.: Trust in multi-agent systems. Knowl.
Eng. Rev. 19(1), 1–25 (Mar 2004)

27. Ricci, A.: Agents and coordination artifacts for feature engineering. In: Ryan, M.D.,
Meyer, J.J.C., Ehrich, H.D. (eds.) Objects, Agents, and Features. Lecture Notes
in Computer Science, vol. 2975, pp. 209–226. Springer (2003)

28. Such, J.M., Espinosa, A., GarćıA-Fornes, A., Sierra, C.: Self-disclosure decision
making based on intimacy and privacy. Inf. Sci. 211, 93–111 (Nov 2012)

29. Such, J.M., Espinosa, A., Garca-Fornes, A.: A survey of privacy in multi-agent
systems. The Knowledge Engineering Review 29, 314–344 (Mar 2014)

30. Tentori, M., Favela, J., Rodriguez, M.D.: Privacy-aware autonomous agents for
pervasive healthcare. IEEE Intelligent Systems 21(6), 55–62 (Nov 2006)

31. Udupi, Y.B., Singh, M.P.: Agents and peer-to-peer computing. chap. Information
Sharing Among Autonomous Agents in Referral Networks, pp. 13–26. Springer-
Verlag (2010)

32. Westin, A.F.: Privacy and Freedom. Atheneum, New York (1967)

164

How testable are BDI agents?
An analysis of branch coverage

Michael Winikoff1

University of Otago, Dunedin, New Zealand.

Abstract. Before deploying a software system, it is important to assure that it
will function correctly. Traditionally, this assurance is obtained by testing the sys-
tem with a collection of test cases. However, since agent systems exhibit complex
behaviour, it is not clear whether testing is even feasible. In this paper we extend
our understanding of the feasibility of testing BDI agent programs by analysing
their testability with respect to the all edges test adequacy criterion, and com-
paring with previous work that considered the all paths criterion. Our findings
include that the number of tests required with respect to the all edges criterion
is much lower than for the all paths criterion. We also compare BDI program
testability with testability of (abstract) procedural programs.

1 Introduction

When any software system is deployed, it is important to have assurance that it will
function as required. Traditionally, this assurance, encompassing both validation and
verification1, is obtained by testing, and there has been work on tools and techniques
for testing agent-based systems (e.g. [9, 11, 14, 15, 24]). However, there is a general
intuition that agents exhibit behaviour that is complex. More precisely, due to the need
to handle dynamic and challenging environments, agents need to be able to achieve
their objectives flexibly and robustly, which requires richer and more complex possible
behaviours than traditional software. Therefore, a key question is whether agent systems
are harder, and possibly even infeasible, to assure by testing.

Before proceeding further we need to define what we mean by a program being
testable. Rather than define testability as a binary property, we define it as a numerical
measure of the effort required to test a program2. Specifically, given a program and a
test adequacy criterion [13], we consider the testability of a program to be the smallest
number of tests that would be required to satisfy the criterion. For example, given the
(very simple!) program “if c then s1 else s2”, then we need two tests to cover all edges
in the control-flow graph corresponding to this program, which satisfies the “all edges”
test adequacy criterion (defined below),

1 More precisely: “software quality assurance (SQA) is a set of activities that define and assess
the adequacy of software processes to provide evidence that establishes confidence that the
software processes are appropriate and produce software products of suitable quality for their
intended purposes.” (ISO/IEC TR 19759:2015(E), page 10-5)

2 We focus on system testing. See [20, Section 7] for a discussion of different forms of testing.

165

The all paths and all edges test adequacy criteria are defined with respect to a
control-flow graph. A given program P corresponds to a graph where nodes are state-
ments (or, for agents, actions), and edges depict the flow of control: a node with multiple
outgoing edges corresponds to a choice in the program. A single test corresponds to a
path through the program’s control-flow graph from its starting node to its final node
(we assume that there is a unique start node S and a unique end node E, which can be
easily ensured). The all paths criterion is satisfied iff the set of tests in the test suite T
cover all paths in the control flow graph. The all edges criterion is satisfied iff the set
of paths in the test suite T covers all edges in the control-flow graph [13]. The all edges
criterion is also referred to as “branch coverage”.

Given the importance of assurance, and the focus on testing as a means of obtaining
assurance3, there has been surprisingly little work that has considered whether testing
agent systems is even feasible. In fact, the only work that we are aware of that considers
this question is the recent work by myself & Cranefield4 [20, 21], which investigated the
testability of Belief-Desire-Intention (BDI) agent programs with respect to the all paths
test adequacy criterion. Winikoff & Cranefield concluded that BDI agent programs do
indeed give rise to a very large number of possible paths (see left part of Table 1), and
therefore they concluded that whole BDI programs are likely to be infeasible to assure
via testing5. However, they do acknowledge that the all paths criterion is known to be
overly conservative, i.e. it requires a very large number of tests. Specifically, all paths
subsumes a wide range of other criteria, including all edges (e.g. see Figure 7 of Zhu
et al. [25] and Figure 6.11 (page 480) of Mathur [13]). This means that the question
of whether (whole) BDI agent programs can be feasibly tested is still open. This paper
aims to address this question by considering testability with respect to the all edges [13]
test adequacy criterion. The all edges criterion is regarded as “the generally accepted
minimum” [12]. In essence, previous work [20] has provided an upper bound (“if we
use a strong criterion, then it’s this hard”). This paper provides a lower bound (“if we
use a weaker criterion, than it’s this hard”).

The remainder of this paper is structured as follows. We (briefly) review BDI agent
programs in Section 2. Section 3 is the core of the paper: it derives equations that
compute for a given BDI program P the number of tests that are required to satisfy
the all edges criterion. We then use these equations to compare testability (with respect
to all edges) with testability with respect to all paths (Section 4). We also compare all
edges testability for BDI programs with all edges testability for (abstract) procedural
programs, in order to answer the question of whether BDI programs are harder to test
than procedural programs with respect to the all edges criterion (Section 5). Finally, in
Section 6 we conclude.

3 There is also a body of work on formal methods (primarily model checking) as a means of as-
surance [23, 3, 16, 6, 8, 10, 7]. However, despite considerable progress, these are not yet ready
to handle realistic programs (e.g. see [8]).

4 To avoid confusion between this paper and the earlier work, I will refer to my earlier work
with Stephen Cranefield as “Winikoff & Cranefield” in the remainder of this paper.

5 They also compared BDI programs with procedural programs, and found that BDI programs
are harder to test than equivalently sized procedural programs, with respect to the all paths
criterion.

166

2 Belief-Desire-Intention (BDI) Agents

The Belief-Desire-Intention (BDI) model [18, 4, 5] is widely-used, and is realised in
many agent-oriented programming languages (AOPLs) (e.g., [1, 2]). It provides a human-
inspired metaphor and mechanism for practical reasoning, in a way that is appropriate
for achieving robust and flexible behaviour in dynamic environments.

A BDI agent program Π consists of a sequence of plans π1 . . . πn where each plan
πi consists of a triggering goal6 gi a context condition ci and plan body bi. The plan
body is a sequence of steps si1 . . . s

i
mi

with each step being either an action or a sub-
goal.

Due to space limitations, we give an informal summary of the semantics. Formal se-
mantics can be easily defined following (e.g.) [17, 22, 19]. These semantics are common
to the family of BDI programming languages (e.g. PRS, dMARS, JAM, AgentSpeak,
JACK). A BDI program’s execution begins with a goal g being posted. The first step is
to determine the subset of relevant plans ΠR ⊆ Π which is those plans πi where the
plan’s trigger gi can be unified with g. The second step is to determine the subset of
applicable plans ΠA ⊆ ΠR which is those plans πi where the plan’s context condition
ci holds with respect to the agent’s current beliefs. The third step is to select one of the
applicable plans πj ∈ ΠA. The body bj of the selected plan πj is then executed. The
execution is done step-by-step, interleaved with further processing of goals (and belief
updates as information from the environment is received).

An important aspect of BDI execution is failure handling. A step in a plan body can
fail. For an action, this can be because the action’s preconditions do not hold, or due to
the action simply not proceeding as planned (the environment is not always benign!).
For a sub-goal, failure occurs when there is no applicable plan. When a plan step fails,
the execution of the sequence of steps is terminated, and the plan is deemed to have
failed.

A common way of dealing with the failure of a plan πi which was triggered by
goal g is to repost the goal g, and select another plan instance. More precisely, ΠA is
re-computed (since the agent’s beliefs might have changed in the interim), but with πi
excluded. A plan (instance) that has failed cannot be selected again when its triggering
goal is reposted.

For the purposes of the analysis of this paper we consider a BDI agent program
to be defined by the grammar below. This grammar simplifies from real BDI agent
programs in a number of ways. Firstly, instead of a plan body having sub-goals g, with
the relevant and applicable plan sets being derived from the plan library Π , we instead
associate with each (sub-)goal g a set of plans7 denoted gP (where P is a set of plan
instances). Because we have done this, we do not need to represent the plan library: a
BDI program is simply a single (possibly quite complex) expression in the grammar
below. Secondly, we follow CAN [22] in using an auxiliary “backup plan” construct
to capture failure handling. Finally, we elide conditions: since the all edges criterion

6 For the purposes of this paper we ignore other possible plan triggers provided by some AOPLs,
such as the addition/removal of belief, and the removal of goals.

7 For the moment we avoid specifying whether P is the set of relevant plans or applicable plans.
The analysis in the next section considers both cases.

167

considers control-flow, we do not need to model the conditions that are used to decide
which edge to take in the control flow graph.

We therefore define a BDI program P using the grammar:

P ::= a | g{P∗} | P1;P2 | P1.P2

where a is an action (and we use a1, a2, a3, . . . to distinguish actions), gP is a (sub-
)goal with associated plans P = {P1, . . . , Pn} (a set of plans), P1;P2 is a sequence,
and P1.P2 represents a “backup plan”: if P1 succeeds, then nothing else is done (i.e. P2

is ignored), but if P1 fails, then P2 is used. Any BDI program with given top-level goal
can be mapped into a BDI program in this grammar. Note that this grammar does not
capture some of the constraints of BDI programs (e.g. that a goal cannot directly post a
sub-goal).

3 All-Edge Coverage Analysis

This section is the core of the paper. It derives equations that answer the question:
“how many test cases (paths) are required to cover all edges in the control-flow graph
corresponding to a given BDI program?”.

Recall that a BDI agent program P can be either an action a, a sub-goal gP , a
sequence (“;”), or an alternative (“.”). We consider each of these cases in turn. For each
case we consider how the construct is mapped to a control-flow graph, and then how
many paths are required to cover all edges in the graph.

S . . . P . . .

Y

N

E

One important feature of BDI pro-
grams is that the execution of a BDI pro-
gram (or sub-program) can either succeed
or fail. A failed execution triggers failure
handling. We represent this by mapping a
program P to a graph (see right) where
there is a start node S, the program P is
mapped to a graph that is reachable from S, and that has two outgoing edges: to Y
(corresponding to a successful execution) and N (corresponding to a failed execution).
There are edges from Y and N to the end node E.

Note that there is an important difference between the notion of a test for a conven-
tional program and for an agent system. In a conventional program a test corresponds to
the setting up of initial conditions, and then the program is started and runs. However, in
an agent system (or, more generally a reactive system), the running system continues to
interact with its environment, and so a test is not just the initial conditions, but also com-
prises the ongoing interactions of the system with its environment. One consequence of
this is that conditions are controllable. If an agent system tests condition c at a certain
point in time, and then tests that condition again later, then in general the environment
might have changed c, and so we assume that all conditions can be controlled by the
test environment. This means that, for instance, if we have a test (i.e. path) that involves
two subsequent parts of the graph, G1 and G2, then the specific path taken through G2

can be treated as being independently controllable from that taken through G1.

168

We now seek to derive equations that calculate the smallest number of paths from
S to E required such that all edges appear at least once in the set of paths.

In order to do this, it turns out that we need to also capture how many of these paths
correspond to successful executions (go via Y) and how many go via N . Notation8:
we define p(P) to be the number of paths required to cover all edges in the graph
corresponding to program P . We also define y(P) (respectively n(P)) to be the number
of these paths that go via Y (respectively N). By construction we have that p(P) =
y(P) + n(P).

Let us now consider each case in turn. The base case of a single action a is straight-
forward. In the graph above it corresponds to the sub-graph P being a single node a.
To cover all edges in the graph we need two test cases: one path S-a-Y -E and one
S-a-N -E. This reflects that an action a can either succeed or fail, and therefore re-
quires two tests to cover these possibilities. Formally we have that p(a) = 2, and that
y(a) = n(a) = 1.

S

S1 . . . P1 . . .

Y1 . . . P2 . . .

N

Y2

E

p(P1;P2)

p(P1)

y(P1)

n(P1)

p(P2)

n(P2)

y(P2)

n(P1;P2)

y(P1;P2)

Next we consider P1;P2. Sup-
pose that a sub-program P1 re-
quires p(P1) tests (i.e. paths) to
cover all edges, with n(P1) of
these tests leading to the failure of
P1, and the remaining y(P1) tests
leading to successful execution of
P1. Since P1 is put in sequence
with P2, we have the control flow graph on the right.

We seek to derive an equation for p(P1;P2) (and for y(P1;P2) and n(P1;P2)) in
terms of the properties of P1 and P2. Let us firstly consider the case where y(P1) ≤
p(P2). In this case if we have enough tests to cover the edges of the sub-graph corre-
sponding to P2, then these tests are also sufficient to cover all edges of P1 that result in
a successful execution of P1 (which lead to P2). So to cover all edges of P1 we need to
add in enough tests to cover those executions that are failed, i.e. n(P1). Therefore we
have that:

p(P1;P2) = n(P1) + p(P2) (1)
y(P1;P2) = y(P2) (2)
n(P1;P2) = n(P1) + n(P2) (3)

We now consider the case where y(P1) ≥ p(P2). In this case if we have enough tests
(i.e. paths) to cover the edges of the sub-graph corresponding to P1, then these tests are
also sufficient to cover all edges of P2. We therefore have that p(P1;P2) = p(P1) =
n(P1) + y(P1).

However, when considering y(P1;P2) and n(P1;P2) things become a little more
complex. Since y(P1) > p(P2), the edge from the sub-graph corresponding to P1 that
goes to the sub-graph corresponding to P2 has more tests traversing it than are required
to cover all edges of P2. In effect, this leaves us with “excess” tests (paths), and we
need to work out how many of these excess paths should be allocated to successful
executions of P2 (i.e. y(P2)), and how many to n(P2).

8 Colour is used to assist readability, but is not essential.

169

Consider the following example. Suppose that P1;P2 is such that9 P1 requires 5
tests to cover all edges (four successful, and hence available to test P2, and one unsuc-
cessful), and where P2 only requires 2 tests to cover all edges. In this situation there are
two additional tests that are required to test P1 and which proceed to continue execut-
ing P2. These two extra tests could correspond to failed executions of P2, to successful
executions of P2, or to one successful and one failed execution. This means that, if we
annotate each edge with the number of times that it is traversed by the set of tests10,
then the edge from Y1 to the P2 sub-graph is traversed 4 times, since the edge from
P1 to Y1 traversed 4 times. The edge from P2 to Y2 could have either a 1, 2, or 3, and
similarly the edge from P2 to N could have either 3, 2, or 1 (see Figure 1 on the next
page).

Returning to the analysis, in this case, where y(P1) > p(P2), we define ε1 +
ε2 = y(P1) − p(P2). Then if we annotate each edge with the number of times that
it is traversed by the tests, then the annotation on the edge from Y1 to P2 would be
p(P2) + ε1 + ε2. If we now consider the edges from the sub-graph corresponding to
P2, then the edge to N (the number of executions where P2 failed) would be annotated
with n(P2) + ε2 and the edge to Y2 would be annotated with y(P2) + ε1. This gives us
the following equations:

p(P1;P2) = n(P1) + y(P1) (4)
y(P1;P2) = y(P2) + ε1 (5)
n(P1;P2) = n(P1) + n(P2) + ε2 (6)

where ε1 + ε2 = y(P1)− p(P2)

Merging these cases with Equations 1, 2 and 3, we obtain the following. Derivation:
for y() and n() observe that equations 2 and 3 are in the case where y(P1) ≤ p(P2)
and hence ε1 = ε2 = 0, reducing the equations below to Equations 2 and 3, and
if y(P1) > p(P2) then the equations below are identical to Equations 5 and 6. For
p(P1;P2) observe that if y(P1) ≤ p(P2) then the equation below reduces to Equation
1, and that if y(P1) > p(P2) then the equation below reduces to Equation 4.

p(P1;P2) = n(P1) + max(y(P1),p(P2))

y(P1;P2) = y(P2) + ε1

n(P1;P2) = n(P1) + n(P2) + ε2

where ε1 + ε2 = max(0,y(P1)− p(P2))

Note that we don’t have deterministic equations that compute n(P1;P2) and y(P1;P2).
Instead, we have equations that permit a range of values, depending on how we choose
to allocate the excess paths represented by ε1 + ε2 between the successful and unsuc-
cessful executions of P2.

9 E.g. P1 = a1 . a2 . a3 . a4 and P2 = a5.
10 Note that for any internal node, the sum of annotations on incoming edges must equal the sum

of annotations on outgoing edges, since all paths begin at S and terminate at E.

170

S

S1 . . . P1 . . .

Y1 . . . P2 . . .

N

Y2

E

5

5

4

1

2 + 2

3, 2, 1

1, 2, 3

4, 3, 2

1, 2, 3

Fig. 1. Example for P1 = a1 . a2 . a3 . a4 and P2 = a5.

S

S1 P1

N1 P2

Y

N2

E

p(P1;P2)

p(P1)

n(P1)

y(P1)

p(P2)

y(P2)

n(P2)

y(P1;P2)

n(P1;P2)

Turning to P1 . P2 we perform
a similar analysis. Note that the con-
trol glow graph for P1 . P2 has the
same structure as that of P1;P2 ex-
cept that N and Y are swapped (see
Figure to the right). The simple case
is when n(P1) ≤ p(P2), in which
case the number of paths required to
test (i.e. cover all edges of) P2 also suffices to cover edges in P1 when P1 fails
(for P1 . P2 it is when P1 fails that P2 is used). For this case we therefore have
p(P1.P2) = y(P1)+p(P2) and y(P1.P2) = y(P1)+y(P2) and n(P1.P2) = n(P2).
Similar analysis for the more complex case gives the equations in Figure 2.

Finally, we consider goals. We begin with the simple case: a goal with a single
relevant plan g{P1}. In this case either the goal immediately fails (due to the plan’s
context condition failing), or the plan is executed. If the plan is executed, then the goal
succeeds exactly when the plan succeeds. Therefore we have: n(g{P1}) = 1 + n(P1),
and y(g{P1}) = y(P1), and p(g{P1}) = 1+p(P1). In the case where P1 is applicable,
then the context condition cannot fail, and we simply have n(g{P1}) = n(P1) and
p(g{P1}) = p(P1).

For a goal with two relevant plans g{P1,P2} (henceforth abbreviated g2), there are
three non-overlapping possibilities: the plan fails immediately (neither context condi-
tion is true), or the first plan is selected, or the second plan is selected. If a plan is
selected, then the plan is executed with the other plan as a (possible) backup option.
Informally we can describe this as

g2 = fail or P1 . g
P2 or P2 . g

P1

(where gP is short hand for g{P}). Which leads to the following equations.

p(g2) = 1 + p(P1 . g
P2) + p(P2 . g

P1)

y(g2) = y(P1 . g
P2) + y(P2 . g

P1)

n(g2) = 1 + n(P1 . g
P2) + n(P2 . g

P1)

171

p(a) = 2 y(a) = 1 n(a) = 1

p(P1;P2) = n(P1) + max(y(P1),p(P2))

y(P1;P2) = y(P2) + ε1

n(P1;P2) = n(P1) + n(P2) + ε2

where ε1 + ε2 = max(0,y(P1)− p(P2))

p(P1 . P2) = y(P1) + max(n(P1),p(P2))

y(P1 . P2) = y(P1) + y(P2) + ε3

n(P1 . P2) = n(P2) + ε4

where ε3 + ε4 = max(0,n(P1)− p(P2))

p(g{P}) = 1 + p(P) y(g{P}) = y(P) n(g{P}) = 1 + n(P)

p(gP) = 1 +
∑

Pi∈P
y(Pi) + max(n(Pi),p(gP\{Pi}))

y(gP) =
∑

Pi∈P
y(Pi) + y(gP\{Pi}) + εi

n(gP) = 1 +
∑

Pi∈P
n(gP\{Pi}) + ε′i

where εi + ε′i = max(0,n(Pi)− p(gP\{Pi}))

p(/gP) = 1 +
∑

P∈P
p(P)

y(/gP) =
∑

P∈P
y(P)

n(/gP) = 1 +
∑

P∈P
n(P)

Fig. 2. Equations to calculate p(P), y(P) and n(P) when P is relevant plans. For applicable
plans delete the grey shaded “1 + ”.

In the case where we are dealing with applicable plans, the only difference is that the
“1+” in the equations for p(g) and n(g) is deleted, since the plan cannot fail. This can
be generalised for a goal with k plans (details omitted) resulting in the equations in
Figure 2.

3.1 Removing Failure Handling

We now briefly consider what happens if we “turn off” failure handling, This is an inter-
esting scenario to consider, because the all paths analysis of Winikoff & Cranefield [20]
found that turning failure handling off reduced the number of tests required enormously.
We use /g to denote a goal where failure handling is not used.

We firstly observe that without failure handling the equation for /g{P} remains un-
changed from g{P}, since if the sole plan P fails, then there is no remaining plan avail-
able to recover.

172

However, for /g{P1,P2} the equations are different. Instead of having (informally)
g2 = fail or P1 . g

P2 or P2 . g
P1 , we have simply /g2 = fail or P1 or P2. Therefore

the corresponding equations are simply: p(/g2) = 1 + p(P1) + p(P2), and y(/g2) =
y(P1) + y(P2), and n(/g2) = 1 + n(P1) + n(P2). These generalise for /gP (where P
denotes a set of plans), yielding the equations in Figure 2. As before, for P being the
applicable plans, remove the “1 + ” from the equations.

3.2 Simplifying for Uniform Programs

g2 d = 2

p11 . . . pj1 d = 1

gl1 . . . gk1 d = 1

p10 . . . pj0 d = 0

...

...

In order to compare with the all paths analysis
of Winikoff & Cranefield [20] we consider uni-
form BDI programs, as they did. A uniform BDI
program is one where all plan bodies have j sub-
goals, all goals have k plans, and the tree is uni-
formly deep.

Applying these assumptions allows the equa-
tions to be simplified, since all sub-goals of a plan
(respectively plans of a goal) have identical structure, and are hence interchangeable.

For example, in the equation for p(P1;P2), P1 and P2 are identical, so instead of
p(P1;P2) = n(P1)+max(y(P1),p(P2)) we have p(P ;P) = n(P)+max(y(P),p(P)).
Now, since p(P) > y(P), we can replace max(y(P),p(P)) with p(P). Therefore,
we have that p(P ;P) = n(P) + p(P). Since p(P) = y(P) + n(P) this is just
n(P) + y(P) + n(P) = y(P) + 2n(P). This generalises to more than two sub-
programs in sequence. Similar simplification can be applied to the other cases, yielding
the equations shown in Figure 3 (ignore the last four equations for the moment).

However, uniform programs (as used by the all paths analysis [20]) actually have
a mixture of actions and goals in plans, i.e. a plan (that is not a leaf) is of the form
P = a; g; a; g; a (for k = 2), not g; g. This means we need to derive equations for this
form.

We begin by deriving p(a; g), y(a; g) and n(a; g), using the simplification that ε1 =
ε2 = 0, since y(P1) = y(a) = 1 and hence p(P2) ≥ 1 so max(0,y(P1)−p(P2)) = 0.

p(a; g) = n(a) + max(y(a),p(g)) = 1 + p(g) (since p(g) > y(a) = 1)
y(a; g) = y(g) (since p(g) > y(a) = 1)
n(a; g) = 1 + n(g)

We then define p1 = a; g; a and derive p(p1), y(p1) and n(p1). In deriving y(p1)
and n(p1) we derive the upper and lower bounds (recall that the equations in Figure 2
specify a range, depending on how we split “excess” (y(P1) − p(P2)) between ε1
and ε2). We work out the upper bound for y(P1) (respectively n(P1)) by assigning
all the excess to ε1 (respectively ε2). We derive equations under the assumption that
y(a; g) > 1, and hence y(a; g) ≥ p(a) = 2. This assumption holds when goals have
more than one plan (i.e. j > 1), which is the case in Table 1.

p((a; g); a) = n(a; g) + max(y(a; g),p(a))
= n(a; g) + y(a; g) = p(a; g) = 1 + p(g)

y((a; g); a) ≤ y(a) + max(0,y(a; g)− p(a))

173

= 1 + y(a; g)− 2 = y(g)− 1
y((a; g); a) ≥ y(a) = 1
n((a; g); a) ≤ n(a; g) + n(a) + max(0,y(a; g)− p(a))

= (1 + n(g)) + 1 + (y(a; g)− 2) = n(g) + y(g) = p(g)
n((a; g); a) ≥ n(a; g) + n(a) = (1 + n(g)) + 1 = 2 + n(g)

We then note that p2 = a; g; a; g; a can be defined as p2 = (a; g); p1, and, more gener-
ally, pk+1 = (a; g); pk.

p(pk+1) = n(a; g) + max(y(a; g),p(pk))
= n(a; g) + p(pk) (since p(pk) ≥ y(a; g))
= 1 + n(g) + p(pk)
which can be generalised to
= k × (1 + n(g)) + 1 + p(g)

y(pk+1) ≤ y(pk) + max(0,y(a; g)− p(pk))
= y(pk) (since p(pk) ≥ y(a; g))
so eventually we just get y(p1) which is . . .
= y(g)− 1

y(pk+1) ≥ y(pk) ≥ y(pk−1) ≥ 1
n(pk+1) = n(a; g) + n(pk) + max(0,y(a; g)− p(pk))

= (1 + n(g)) + n(pk) (since p(pk) ≥ y(a; g))
= k × (1 + n(g)) + n(p1)

The yields the last four equations of Figure 3, which are required to calculate the testa-
bility of uniform BDI programs. Note that in the last equation, since n(p1) ≥ 2 + n(g)
and n(p1) ≤ p(g), we also have a range for n(pk).

4 All-edges vs. All-paths

In the previous section we derived equations that tell us how many tests (paths) are
required to ensure adequate coverage of a BDI program with respect to the all edges
criterion. We now use these equations to compare the all edges criterion against the all
paths criterion. We know that the all paths criterion requires more tests to be satisfied,
but how many more? Since comparing (complex) formulae is not easy, we follow the
approach of Winikoff & Cranefield, and instantiate the formulae with a number of plau-
sible values, to obtain actual numbers that can be compared. We use the same scenarios
(i.e. parameters) that they used.

In order to derive the All Edges numbers in Table 1 the equations of Figure 2 were
implemented as a Prolog program that computed (non-deterministically) the values of
p(P), y(P) and n(P) for any given BDI program P . Additionally, code was written
to generate a uniform BDI program P , given values for j, k, and d. This was used
to generate the full uniform program P for the first three cases in Table 1, and then
compute p(P) for the generated BDI program. The last case exhausted Prolog’s stack.

Additionally, the equations of Figure 3 were implemented as a Scheme program that
computed p(), y(), and n() for given values of j, k, and d. These were used to calculate

174

p(P1; . . . ;Pj) = y(P) + j × n(P)

y(P1; . . . ;Pj) = y(P)

n(P1; . . . ;Pj) = j × n(P)

p(P1 Pk) = n(P) + k × y(P)

y(P1 Pk) = k × y(P)

n(P1 Pk) = n(P)

p(g{P}) = 1 + p(P)

y(g{P}) = y(P)

n(g{P}) = 1 + n(P)

p(gP) = 1 + |P| × (y(P) + p(gP\{Pi}))

y(gP) = |P| × (y(P) + y(gP\{Pi}))

n(gP) = 1 + |P| × n(gP\{Pi})

p(/gP) = 1 + |P| × p(P)

y(/gP) = |P| × y(P)

n(/gP) = 1 + |P| × n(P)

p(pk+1) = k × (1 + n(g)) + 1 + p(g)

y(pk+1) ≤ y(g)− 1

y(pk+1) ≥ 1

n(pk+1) = k × (1 + n(g)) + n(p1)

Fig. 3. Equations to calculate p(P), y(P) and n(P), simplified for uniform programs, where
pk+1 denotes a program of the form a; g; a; . . . a; g; a with k + 1 goals (k ≥ 0).

values of p(). These values matches those computed by the Prolog program for the first
three cases, and provided the values for the fourth case (d = 3, j = 3, k = 4 for which
Prolog ran out of stack space).

Table 1 contains the results for these illustrative comparison cases (ignore the right-
most column for now). The left part of the Table (Parameters, Number of goals, plans,
and actions, and All Paths) are taken from the all paths analysis of Winikoff & Crane-
field [20]. The right part (All Edges) is the new numbers from this work.

Comparing the results we make a number of observations. Firstly, as expected, the
number of tests required to adequately test a given BDI program P with respect to the
all edges test adequacy criterion is lower than the number of tests required with respect
to the all paths criterion. However, what is interesting is that the numbers are very
much lower (e.g. a few thousand compared with more than 2× 10107). Specifically, the
number of tests required with respect to the all edges criterion is sufficiently small to be
feasible. For instance, in the third case (j = 2, k = 3, d = 4) where the (uniform) BDI
program has 259 goals and 518 plans, corresponding to a non-trivial agent program, the
number of required test cases is less than 1600.

However, it is worth emphasising that the all edges criterion, even for traditional
software, is regarded as a minimum. Additionally, it can be argued that agents, which

175

All Edges All
Params Number of . . . All Paths p(g) p(/g) Edges
j k d goals plans actions n4(g) n8(g) relev. applic. relev. applic. q(Q)

2 2 3 21 42 62 (13) 6.33× 1012 1.82× 1013 141 78 85 64 62
3 3 3 91 273 363 (25) 1.02× 10107 2.56× 10107 6,391 2,961 469 378 363
2 3 4 259 518 776 (79) 1.82× 10157 7.23× 10157 1,585 808 1,037 778 776
3 4 3 157 471 627 (41) 3.13× 10184 7.82× 10184 10,777 4,767 799 642 627

Table 1. Comparison of All Paths and All Edges analyses. The first number under “actions”
(e.g. 62) is the number of actions in the tree, the second (e.g. 13) is the number of actions in a
single execution where no failures occur. For All Edges there are four numbers: the first two are
the (normal) case where failure handling is used to re-post a goal in the event that a plan fails. The
next two are the case where failure handling is disabled, so if a plan fails, the parent goal fails as
well. The columns labelled “relev.” and “applic.” are where the plans associated with a goal are
respectively the relevant plans (so a goal can fail even though there are still untried plans), and
the applicable plans.

are situated in an environment that is typically non-episodic, might be more likely than
traditional software to be affected by the history of their interaction with the environ-
ment [20, Section 1.1], which means that the all paths criterion is more relevant (since a
path includes history, and requiring all paths insists that different histories are covered
when testing).

We now turn to consider the four cases under All Edges, i.e. the effects of dis-
abling failure handling, and allowing goals to fail even when there are remaining plans.
Whereas a key finding of Winikoff & Cranefield was that failure handling made an
enormous difference, in our analysis we found the opposite. This does not reflect a dis-
agreement with their analysis, but a difference in the characteristics of all paths vs. all
edges. Adding failure handling has the effect of extending paths that would otherwise
fail. This means that enabling failure handling increases the number of paths. However,
for the all edges criterion, we do not need to cover all paths, only all edges, so the
additional paths created by enabling failure handling do not require a commensurate
increase in the number of tests required to cover all edges.

Finally, we consider the difference between the set of plans associated with a goal
being the relevant and being the applicable plan set. Interestingly, this makes a differ-
ence, and surprisingly, in some cases it makes more of a difference than enabling failure
handling! For example, in the third example case (j = 2, k = 3, d = 4) where more
tests are required without failure handling (1037) than with failure handling, but where
the plans are the applicable plan set (808). Note that the all paths analysis considered
the j plans associated with each goal to be applicable.

5 BDI vs. Procedural

The previous section considered the question of whether testing BDI agent programs
was hard. We now consider the question of whether it is harder, i.e. we compare the
number of tests required to adequately test a BDI agent program (with respect to the all

176

edges criterion) with the number of tests required to adequately test an equivalent-sized
(abstract) procedural program.

We choose to compare equivalently-sized programs for the simple reason that, in
general, a larger program (procedural or BDI) will require more tests. So in order to
compare procedural and BDI programs we need to keep the size fixed. The particu-
lar measure of size that we use is the number of primitive elements, actions for BDI
programs, primitive statements for procedural programs.

Following Winikoff & Cranefield [20] we define an abstract procedural program as
(we use Q to avoid confusion with BDI programs P):

Q ::= s | Q+Q | Q;Q

In other words, the base case is a statement s, and a compound program can be a combi-
nation of programs either in sequence (Q1;Q2), or as an alternative choice (Q1 +Q2).
Note that for our analysis we do not need to model the condition on the choice, so the
program “if c then Q1 else Q2” is simply represented as a choice between Q1 and Q2,
i.e.Q1+Q2. Note that loops are modelled as a choice between looping and not looping
(following standard practice [13, p.408] we only consider loops to be executed once, or
zero times). Mapping these programs to control-flow graphs is straightforward, and a
program is mapped to a single-entry and single-exit graph. Note that these procedural
programs do not include failure handling: we are comparing the

We now consider how many tests (i.e. paths) are required to cover all edges in the
graph corresponding to a procedural program Q. We denote this number (i.e. the testa-
bility of program Q with respect to the all edges criterion) by q(Q). There are three
cases. In the base case, a single statement, a single path suffices to cover both edges.
In the case of an alternative, each path either traverses the sub-graph corresponding to
Q1, or the sub-graph corresponding to Q2. Therefore the number of paths required to
cover all edges in the graph corresponding to Q1 + Q2 is the sum of the number of
paths required for each of the two sub-graphs, i.e. q(Q1 + Q2) = q(Q1) + q(Q2).
Turning to a sequence Q1;Q2, suppose that we require q(Q1) tests to cover all edges
in Q1, and, respectively, q(Q2) paths to cover all edges in Q2. Note that each path tra-
verses the sub-graph corresponding to Q1, and then continues to traverse the sub-graph
corresponding to Q2. This means that each path “counts” towards both Q1 and Q2, so
the smallest number of paths that might be able to cover all edges is just the maxi-
mum of the number of paths required to test each of the two sub-graphs (q(Q1;Q2) =
max(q(Q1),q(Q2))).

However, this assumes that paths used to cover the part of the control-flow graph
corresponding to Q1 can be “reused” effectively to cover the Q2 part of the graph. This
may not be the case, and since conditions are not controllable (the environment cannot
change conditions while the program is running), we cannot make this assumption. So
although it might be possible that only max(q(Q1),q(Q2)) tests (i.e. paths) would
suffice to cover all edges in the control flow graph corresponding to Q1;Q2, it may
also be the case that more tests are required. In the worse case it might be that the set
of tests designed to cover all edges of Q1 all take the same path through Q2, in which
case we would require an additional q(Q2) − 1 tests to cover the rest of the sub-graph

177

corresponding to Q2. This yields the following definition:

q(s) = 1

q(Q1;Q2) ≥ max(q(Q1),q(Q2))

q(Q1;Q2) ≤ q(Q1) + q(Q2)− 1

q(Q1 +Q2) = q(Q1) + q(Q2)

We define the size of a program Q (denoted by |Q|) as being the number of state-
ments. It can then be shown that for a procedural program Q of size m it is the case that
q(Q) ≤ m.

Lemma 1. q(Q) ≤ |Q|.
Proof by induction: Base case: size 1, so Q = s, and q(s) = 1 ≤ 1. Induction:
suppose q(Q) ≤ |Q| for |Q| < m, need to show it also holds for |Q| = m. Observe
that q(Q1;Q2) < q(Q1+Q2), so we only need to show that q(Q1+Q2) ≤ |Q1|+|Q2|,
and the case for q(Q1;Q2) then follows. So, consider the case where Q = Q1 + Q2,
hence q(Q) = q(Q1)+q(Q2). By the induction hypothesis we have that q(Q1) ≤ |Q1|
and q(Q2) ≤ |Q2| and so q(Q1 +Q2) = q(Q1) + q(Q2) ≤ |Q1|+ |Q2| = |Q|. ut

In other words, the number of paths (tests) required to cover all edges is at most
the number of statements in the program. By contrast, to cover all paths, the number of
tests required is approximately 3m/3 [20, page 109].

The rightmost column of Table 1 shows the number of tests (paths) required to test
a procedural program Q of the same size as the BDI program in question for that row.
Following Winikoff & Cranefield, we define size in terms of the number of actions
(BDI) and statements (procedural), so, for example, the first row of Table 1 concerns a
BDI goal-plan tree containing 62 actions (with j = k = 2 and d = 3), and a procedural
program containing 62 statements.

We observe that the case with no failure handling and where P is applicable plans
(i.e. the rightmost of the four numbers) is very close to q(Q). On the other hand, en-
abling failure handling does, for some cases, result in significantly more tests being
required to adequately test the program. For example, 6,391 vs. 363, or 10,777 vs. 627.
Both these cases have j = 3, whereas for the other two cases where j = 2 the differ-
ence is smaller. So we conclude that, especially where failure handling exists (which
is the case for most BDI agent programming languages), and where goals have multi-
ple plans available, then testing a BDI agent program is indeed harder than testing an
equivalently-sized procedural program.

6 Conclusion

We considered the question of whether testing of BDI agent programs is feasible by
quantifying the number of tests required to adequately test a given BDI agent program
with respect to the all edges criterion. Our findings extend the earlier analysis of this
question with respect to the all paths criterion to give a more nuanced understanding of
the difficulty of testing BDI agents.

178

One key conclusion is that the number of tests required to satisfy the all edges cri-
terion is not just lower (as expected) but very much lower (e.g. > 2× 10107 vs. around
6, 400). Indeed, the number of tests required is sufficiently small to be feasible, although
we do need to emphasise that all edges is generally considered to be a minimal require-
ment, and that there are arguments for why it is less appropriate for agent systems.

We also found that the introduction of failure handling did not make as large a
difference for the all edges criterion, as it did for the all paths analysis.

When comparing BDI programs to procedural programs, our conclusion lends strength
to the earlier result of Winikoff & Cranefield. They found that BDI agent programs were
harder to test than equivalently sized procedural programs (with respect to the all paths
criterion). We found that this is also the case for the all edges criterion, but only where
goals had more than two plans.

Our overall conclusion is that BDI programs do indeed seem to be harder to test
than procedural programs of equivalent size. However, whether it is feasible to test
(whole) BDI programs remains unsettled. The all paths analysis (which is known to be
pessimistic) concluded that BDI programs could not be feasibly tested. On the other
hand, the all edges analysis (known to be optimistic) concluded that BDI programs
could be feasibly tested. Further work is required.

Other future work includes applying these calculations to real programs, and con-
tinuing the development of formal methods for assuring the behaviour of agent-based
systems [23, 3, 16, 6, 8, 10, 7].

References

1. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors. Multi-Agent Pro-
gramming: Languages, Platforms and Applications. Springer, 2005.

2. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors. Multi-Agent Pro-
gramming: Languages, Tools and Applications. Springer, 2009.

3. R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking AgentSpeak.
In Autonomous Agents and Multiagent Systems (AAMAS), pages 409–416, 2003.

4. M. E. Bratman. Intentions, Plans, and Practical Reason. Harvard University Press, Cam-
bridge, MA, 1987.

5. M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded practical rea-
soning. Computational Intelligence, 4:349–355, 1988.

6. M. Dastani, K. V. Hindriks, and J.-J. C. Meyer, editors. Specification and Verification of
Multi-agent systems. Springer, Berlin/Heidelberg, 2010.

7. L. A. Dennis, M. Fisher, N. K. Lincoln, A. Lisitsa, and S. M. Veres. Practical verification
of decision-making in agent-based autonomous systems. Automated Software Engineering,
2014. 55 pages.

8. L. A. Dennis, M. Fisher, M. P. Webster, and R. H. Bordini. Model checking agent program-
ming languages. Automated Software Engineering Journal, 19(1):3–63, March 2012.

9. E. E. Ekinci, A. M. Tiryaki, Ö. Çetin, and O. Dikenelli. Goal-oriented agent testing re-
visited. In M. Luck and J. J. Gomez-Sanz, editors, Agent-Oriented Software Engineering
IX, volume 5386 of Lecture Notes in Computer Science, pages 173–186, Berlin/Heidelberg,
2009. Springer.

10. M. Fisher, L. Dennis, and M. Webster. Verifying autonomous systems. Communications of
the ACM, 56(9):84–93, 2013.

179

11. J. J. Gomez-Sanz, J. Botı́a, E. Serrano, and J. Pavón. Testing and debugging of MAS inter-
actions with INGENIAS. In M. Luck and J. J. Gomez-Sanz, editors, Agent-Oriented Soft-
ware Engineering IX, volume 5386 of Lecture Notes in Computer Science, pages 199–212,
Berlin/Heidelberg, 2009. Springer.

12. P. Jorgensen. Software Testing: A Craftsman’s Approach. CRC Press, second edition edition,
2002.

13. A. P. Mathur. Foundations of Software Testing. Pearson, 2008. ISBN 978-81-317-1660-1.
14. C. D. Nguyen, A. Perini, and P. Tonella. Experimental evaluation of ontology-based test gen-

eration for multi-agent systems. In M. Luck and J. J. Gomez-Sanz, editors, Agent-Oriented
Software Engineering IX, volume 5386 of Lecture Notes in Computer Science, pages 187–
198, Berlin/Heidelberg, 2009. Springer.

15. L. Padgham, Z. Zhang, J. Thangarajah, and T. Miller. Model-based test oracle generation
for automated unit testing of agent systems. IEEE Transactions on Software Engineering,
39:1230–1244, 2013.

16. F. Raimondi and A. Lomuscio. Automatic verification of multi-agent systems by model
checking via ordered binary decision diagrams. J. Applied Logic, 5(2):235–251, 2007.

17. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In W. V.
de Velde and J. Perrame, editors, Agents Breaking Away: Proceedings of the Seventh Euro-
pean Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW’96),
pages 42–55. Springer Verlag, 1996. LNAI, Volume 1038.

18. A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In
J. Allen, R. Fikes, and E. Sandewall, editors, Principles of Knowledge Representation and
Reasoning, Proceedings of the Second International Conference, pages 473–484. Morgan
Kaufmann, 1991.

19. R. Vieira, Á. Moreira, M. Wooldridge, and R. H. Bordini. On the formal semantics of speech-
act based communication in an agent-oriented programming language. Journal of Artificial
Intelligence Research (JAIR), 29:221–267, 2007.

20. M. Winikoff and S. Cranefield. On the testability of BDI agent systems. Journal of Artificial
Intelligence Research (JAIR), 51:71–131, 2014.

21. M. Winikoff and S. Cranefield. On the testability of BDI agent systems (extended abstract).
In Journal track of the International Joint Conference on Artificial Intelligence (IJCAI),
pages 4217–4221, 2015.

22. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative & procedural goals
in intelligent agent systems. In Proceedings of the Eighth International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR), pages 470–481, Toulouse, France,
2002. Morgan Kaufmann.

23. M. Wooldridge, M. Fisher, M.-P. Huget, and S. Parsons. Model checking multi-agent systems
with MABLE. In Autonomous Agents and Multi-Agent Systems (AAMAS), pages 952–959,
2002.

24. Z. Zhang, J. Thangarajah, and L. Padgham. Automated unit testing for agent systems. In
Second International Working Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE), pages 10–18, 2007.

25. H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage and adequacy. ACM
Computing Surveys, 29(4):366–427, Dec. 1997.

180

Reasoning about the Executability of Goal-Plan
Trees

Yuan Yao1, Lavindra de Silva2, and Brian Logan3

1 School of Computer Science
University of Nottingham

yvy@cs.nott.ac.uk
2 Institute for Advanced Manufacturing

Faculty of Engineering
University of Nottingham

lavindra.desilva@nottingham.ac.uk
3 School of Computer Science

University of Nottingham
bsl@cs.nott.ac.uk

Abstract. User supplied domain control knowledge in the form of hi-
erarchically structured agent plans is at the heart of a number of ap-
proaches to reasoning about action. This knowledge encodes the “stan-
dard operating procedures” of an agent for responding to environmental
changes, thereby enabling fast and effective action selection. This paper
develops mechanisms for reasoning about a set of hierarchical plans and
goals, by deriving “summary information” from the conditions on the
execution of the basic actions forming the “leaves” of the hierarchy. We
provide definitions of (necessary and contingent) pre-, in-, and postcon-
ditions of goals and plans that are consistent with the conditions of the
actions forming a plan. Our definitions extend previous work with an
account of both deterministic and non-deterministic actions, and with
support for specifying that actions and goals within a (single) plan can
execute concurrently. Based on our new definitions, we also specify re-
quirements that are useful in scheduling the execution of steps in a set
of goal-plan trees. These requirements essentially define conditions that
must be protected by any scheduler that interleaves the execution of
steps from different goal-plan trees.

1 Introduction

User supplied domain control knowledge in the form of hierarchically structured
agent plans is at the heart of a number of approaches to reasoning about action.
This knowledge encodes the “standard operating procedures” of an agent for
responding to environmental changes, thereby enabling fast and effective action
selection. Various lines of previous work have exploited such control knowledge,
including multi-agent coordination [7, 8], interleaved plan execution in single-
agent systems [16, 15], heuristic approaches to speeding up classical planning [3,

181

11, 5], and approaches to synthesising desirable primitive and abstract plans [12,
9].

This paper develops mechanisms for reasoning about a set of hierarchical
plans and goals, by deriving “summary information” from the conditions on the
execution of the basic actions forming the “leaves” of the hierarchy. We provide
definitions of necessary and contingent pre-, in-, and postconditions of goals and
plans that are consistent with the conditions of the (possibly nondeterministic)
actions forming a plan. Such information is useful when writing agent programs,
e.g. when deciding which goal-plan tree is the minimally interfering “building
block” to include within a new plan in order to bring about a desired postcondi-
tion. In addition to summarising the “static” properties of a single goal-plan tree,
we also define requirements that are useful in scheduling the execution of steps
in a set of goal-plan trees. While goal-plan trees are are most commonly used
to represent a BDI agent’s domain knowledge, the mechanisms we present could
equally be used to represent and reason about the executability of HTN (Hi-
erarchical Task Network) planning [10] structures, e.g., to synthesise new HTN
recipes from existing task networks. HTN and BDI systems are closely related
in terms of syntax and semantics, making it possible to translate between the
two representations [13].

The paper extends the most closely related strands of work in the literature,
i.e., [7, 8, 16, 15] in two main ways. Like us, these authors also derive summary
information from a set of hierarchical plans, and use that information to find a
schedule for the concurrent execution of a given set of top-level goals. Our first
extension is an account of both deterministic and non-deterministic primitive
actions, and the second is the ability to specify that actions and goals within
a (single) plan can execute concurrently. We also contribute novel correspond-
ing definitions for the conditions that must be protected by any scheduler that
interleaves the execution of steps from different goal-plan trees.

The remainder of this paper is organised as follows. In Section 2 we discuss
closely related work from the literature. In Section 3, we define the ‘static’,
necessary and contingent conditions of actions, plans and goals. Then, in Section
4 we define the corresponding ‘dynamic’ notions, which specify the conditions
that must be taken into account when scheduling. Finally, in Section 5, we
conclude and identify directions for future work.

2 Related Work

Our approach is closely related to two previous strands of work in the literature.
The first is that of Clement et al. [7, 8], where algorithms are presented for de-
riving “summary” information from user-supplied hierarchical plans belonging
to the various agents in a multi-agent system. The derived knowledge is then
used to find a schedule that can coordinate the agents at runtime. The work of
Thangarajah et al. [16, 15, 14] is similar, though they focus on the single-agent
case. They describe an approach based on summary information that coordi-
nates the various goal-plan trees of a single agent, in order to exploit positive

182

interactions between them and to avoid negative interactions; both of these in-
volve reasoning about necessary and possible summary conditions for different
ways of achieving a goal. They give algorithms for scheduling goal-plan trees,
e.g., to determine whether a newly adopted (sub)goal will definitely be safe to
execute without conflicts, or will definitely result in conflicts. In the latter case,
Thangarajah et al. suspend the goal until it is safe to execute it.

An important difference between the work of Thangarajah et al. and that
of Clement et al. is that the former defines the necessary post-condition of a
goal or plan as the effects that are necessarily brought about at any (even an
intermediate) stage during the goal’s or plan’s possible executions, whereas a
necessary post-condition in the latter work represents only those effects that
necessarily hold at the end of all executions. We incorporate both these notions
in our approach; the former notion corresponds to our requirements that must
hold for the successful execution of a set of goal-plan trees.

Another important difference involves a special case in which a plan has a
step that makes a later step’s associated ‘descendant’ (sub)plan inapplicable. To
address this, [8] assumes that any such conflict might be resolvable later, during
the scheduling phase, by inserting an available (concurrent) plan—possibly one
belonging to a different agent—that asserts a suitable post-condition.4 On the
other hand, we disallow such conflicts in order to define a “local” notion of a
contingent condition, which does not rely on other concurrent plans.

Our work is also related to that of de Silva et al. [9], who focus on how sum-
mary information could be used for the synthesis of desirable “abstract plans”.
To this end, the authors briefly describe how the above strands of work could
be extended to support the specification of variables in agent programs, i.e., to
a restricted first-order language. While de Silva et al. also support basic actions,
they are deterministic, and cannot be overlapped with other actions.

3 Goal-Plan Trees

As in [16, 14] we use goal-plan trees to represent the relations between goals,
plans and actions, and to reason about the interactions between intentions. The
root of a goal-plan tree is a top-level goal5 (goal node), and its children are
the plans that can be used to achieve the goal (plan nodes). Plans may in turn
contain subgoals (goal nodes), giving rise to a tree structure representing all
possible ways an agent can achieve the top-level goal.

In [16, 14] goal-plan trees contain only goals and plans. We extend their
definition of goal-plan trees to allow primitive actions in plans in addition to
subgoals as in [2]. Plans thus consist of a sequence of steps which may contain
actions. Figure 1 shows the BNF syntax of extended goal-plan trees. A GoalType
is a template for a goal. A GoalInstance is created when an agent chooses to

4 This assumption is related to the Modal Truth Criterion [6].
5 We assume a procedural interpretation of goals (‘goals to do’ rather than goals to

achieve a state). It is straightforward to adapt the definitions below for declarative
goals.

183

pursue a particular instance of goal-type. Similarly, a PlanType is a template
for a plan, and a PlanInstance is created when the agent executes a particular
plan. In addition, we introduce an ActionType as a template for an action, and
an ActionInstance is created when a particular action is chosen for execution by
the agent. GoalTypeName, PlanTypeName and ActionTypeName are labels that
indicate the type of the goal, the plan or the action respectively. Plans represents
the set of plan-types that may be used to satisfy a goal of the corresponding
GoalType.

�GoalType� ::= �GoalTypeName� �Precondition� �In-condition� �Postcondition�
�Plans�

�GoalTypeName� ::= �Label�
�Plans� ::= �PlanTypeName� (, �PlanTypeName�)∗

�PlanType� ::= �PlanTypeName� �Precondition� �In-condition� �Postcondition�
�PlanBody�

�PlanTypeName� ::= �Label�
�PlanBody� ::= �ExecutionStep� (; �ExecutionStep�)∗

�ExecutionStep� ::= �ActionTypeName� | �GoalTypeName�
| (�ExecutionStep� � �ExecutionStep�)

�ActionType� ::= �ActionTypeName� �Precondition� �In-condition� �Postcondition�
�ActionTypeName� ::= �Label�

�Precondition� ::= � | �Condition� (, �Condition�)∗
�In-condition� ::= � | �Condition� (, �Condition�)∗

�Postcondition� ::= � | �Condition� (, �Condition�)∗
�Condition� ::= �Statement� | NOT �Statement�
�Statement� ::= string | �Variable� = �Value�

�Label� ::= unique string
�Variable� ::= unique string

�Value� ::= string

�GoalInstance� ::= �InstanceName� �GoalType�
�PlanInstance� ::= �InstanceName� �PlanType�

�ActionInstance� ::= �InstanceName� �ActionType�
�InstanceName� ::= �Label�

Fig. 1. BNF Syntax of goal-plan trees with actions

Goals, plans and actions have pre-, in-, and postconditions. Pre- and post-
conditions specify respectively the states of the environment which must hold
immediately before the action, plan, or goal is executed, and which are brought
about by executing the action, plan, or goal. In-conditions specify the states of
the environment which must hold for the duration of the execution of the ac-
tion, plan, or goal. In-conditions of plans and goals are thus relevant when their

184

associated actions are interleaved or overlapped, and in-conditions of actions are
relevant when they are overlapped.

We model the environment using a set of propositions Φ, and define pre-, in-
and postconditions of a goal-plan tree node η (an action, plan or goal) as sets of
literals (elements of Φ+ = Φ ∪ {¬p | p ∈ Φ}) as follows.

Precondition: a precondition is a set of literals φ = pre(η), φ ⊆ Φ+ that must
be true for η to begin execution (where η is an action or plan), or for η to
be achieved (where η is a goal).

In-condition: an in-condition is a set of literals υ = in(η), υ ⊆ Φ+ that must
hold during the execution of η (where η is an action or plan), or during the
pursuit of η (where η is a goal); if any of the literals in υ becomes false during
execution, the action, plan or goal is aborted with failure.

Postcondition: a postcondition (or effect) is a set of literals ψ = post(η),
ψ ⊆ Φ+ that are or may be made true by executing η (where η is an action
or plan), or by achieving η (where η is a goal).

We distinguish two types of pre-, in- and postconditions: necessary and contin-
gent. A necessary (or universal) condition must hold for all executions of an
action or plan or for all ways of achieving a goal, while a contingent (or exis-
tential) condition must hold for some executions of the action or plan or some
ways of achieving the goal. We denote the necessary and contingent precondi-
tions as pren(η) and prec(η), where η is an action, plan or goal, and stipulate
that pre(η) = pren(η) ∪ prec(η). Similarly, we denote necessary and contingent
in-conditions as inn(η) and inc(η), and necessary and contingent postcondi-
tions as postn(η) and postc(η), and stipulate that in(η) = inn(η) ∪ inc(η) and
post(η) = postn(η) ∪ postc(η). The necessary and contingent postconditions of
an action, plan, or goal are always disjoint, and the same applies to necessary
and contingent in-conditions, and to necessary and contingent preconditions.

While the relevant pre-, in- and postconditions form part of the definition of
an action, the conditions of plans and goals are derived from the conditions of
their actions and subgoals (in the case of plans) and from plans to achieve the
goal (in the case of goals). We give formal definitions of necessary and contingent
conditions for actions, plans, and goals in the sections below.

3.1 Actions

Actions are the basic steps an agent can perform in order to change its environ-
ment. Actions may be deterministic or non-deterministic. Deterministic actions
have a single outcome (postcondition), while the execution of a non-deterministic
action results in one of a set of possible outcomes (set of postconditions).

The precondition of an action α, pren(α) = φ, is always necessary (and
prec(α) = ∅). The in-condition of an action, inn(α) = υ, is also necessary
(and inc(α) = ∅). Deterministic actions have a single postcondition ψ. The
necessary postcondition of a deterministic action α is defined as postn(α) = ψ,
and the contingent postcondition is defined by postc(α) = ∅. The execution

185

of a non-deterministic action results in one of a set of possible postconditions
{ψ1, . . . , ψn}, ψi ⊆ Φ+. The necessary postcondition of a non-deterministic ac-
tion α is defined as postn(α) =

�
ψi ∈ {ψ1, . . . , ψn}, and the contingent post-

condition is defined by postc(α) =
�
ψi ∈ {ψ1, . . . , ψn} \ postn(α).

6 We assume
that action specifications are consistent in the sense that each possible out-
come of an action is itself consistent, i.e., that ψi �|= ⊥, 1 ≤ i ≤ n, and that
execution of an action does not invalidate the in-condition of the action, i.e.,
inn(α) ∪ postn(α) ∪ postc(α) �|= ⊥.7

3.2 Plans

A plan π consists of a sequence of actions, subgoals, and parallel compositions of
actions and subgoals. That is, a plan is of the form π = α1; . . . ;αm, where each
αi is either an action, a subgoal or a parallel composition β1� . . . �βk, where each
βi is either an action or a subgoal. In the interests of generality, we make no as-
sumptions about the execution of a parallel composition of actions and subgoals:
steps β1, . . . , βk may be executed in parallel, i.e., they may overlap in any of the
ways defined in [1], or their execution may be arbitrarily interleaved.8 However,
we require that there are no conflicts between the pre-, in- and postconditions
of β1, . . . , βk and, as a result, the overall postcondition of the parallel composi-
tion is “stable”, i.e., for each βi, βj , 1 ≤ i ≤ k, 1 ≤ j ≤ k, i �= j, the necessary
and contingent postconditions of βi must be consistent with the necessary and
contingent pre- in- and postconditions βj .

We define the necessary and contingent conditions of a parallel composition
as follows. The necessary postcondition of a parallel composition α = β1� . . . �βk

is defined as

postn(α) =
k�

i=1

postn(βi).

The contingent postcondition of a parallel composition is defined similarly, ex-
cept that we exclude any contingent postcondition literal of a step if it is also a
necessary postcondition of some other step, i.e.,

postc(α) =
k�

i=1

postc(βi) \ postn(α).

However, the necessary pre- and in-conditions of a parallel composition need
to take into account postconditions of steps that possibly establish—by virtue

6 Note that this defines the contingent conditions of an action as distinct from the
necessary conditions.

7 For entailment, we sometimes treat a conjunction of literals as a set consisting of
the literals.

8 For example, if βi is an action and βj a subgoal, then βi may be interleaved with
the actions appearing in the goal-plan tree for βj .

186

of how steps are interleaved or overlapped—the pre- and in-conditions of other
steps, i.e.,

conn(α) =
�

i∈{1,...,k}

�
conn(βi) \

�

j∈{1,...,k}\{i}
(postn(βj) ∪ postc(βj))

�
,

where con is either pre or in. Finally, the contingent pre- and in-conditions of a
parallel composition is defined as

conc(α) =

k�

i=1

�
conc(βi) ∪ conn(βi)

�
\ conn(α)

where con is either pre or in.
We can now define the necessary and contingent pre-, in- and postconditions

of plans. The necessary precondition of a plan π = α1; . . . ;αm is defined as

pren(π) = pren(α1) ∪
m�

i=2


pren(αi) \

i−1�

j=1

postn(αj) ∪ postc(αj)




that is, the necessary preconditions of steps that are not established by the
necessary or contingent postconditions of previous steps. Necessary preconditions
must hold for all executions of π.9 Note that we do not assume that a plan
establishes all the preconditions of the steps in the plan. For example, a plan
to make coffee may assume that the agent is in the kitchen and that there
is coffee in the kitchen. However, we do assume that each plan π ensures a
‘free-choice’ among its ‘descendant’ plans (plans that achieve the subgoals of
π). For example, a plan to make coffee should not cause the agent to leave
the kitchen before the coffee is made, as that would then invalidate one or more
subplans, e.g. one that grinds the coffee. More precisely, for any step αk in a plan
π = α1; . . . ;αn, if there is an earlier step αi (i < k) and a literal l ∈ postn(αi)
such that ∼ l ∈ pren(αk) ∪ prec(αk) ∪ inn(αk) ∪ inc(αk), then there is also
an intermediate step αj (i < j < k) with ∼ l ∈ postn(αj) ∪ postc(αj), where
∼ l = ¬p if l = p and ∼ l = p if l = ¬p.

If π contains non-deterministic actions or subgoals, it may also have contin-
gent preconditions, i.e., preconditions which may have to be established depend-
ing on the outcome of a non-deterministic action (if the outcome of the action
fails to achieve the precondition of a later action in the plan) or the choice of plan
to achieve a subgoal. Thus, the contingent precondition of a plan π = α1; . . . ;αm

is defined as prec(π) = prec(α1) ∪
m�

i=2



�
prec(αi) \

i−1�

j=1

postn(αj)
�
∪
��

pren(αi) \
i−1�

j=1

postn(αj)
�
∩

i−1�

j=1

postc(αj)
�

.

9 As we are concerned with the executability of plans rather than their applicability
in a particular context, we do not include the context condition (belief context) of
a plan specified by a developer to be part of its precondition. However, in a well-
formed plan, the necessary precondition should form (part of) the context condition
of the plan.

187

That is, the possible preconditions of each step not established by necessary
postconditions of previous steps, and the necessary preconditions of each step
that are (possibly) established by contingent postconditions of previous steps,
but not by their necessary postconditions. Observe that sets pren(π) and prec(π)
are mutually exclusive by definition.

The necessary in-condition of a plan π = α1; . . . ;αm is defined as

inn(π) =
m−1�

i=1

(inn(αi) ∩ inn(αi+1)).

That is, a necessary in-condition of a plan π is an in-condition that is common
across two or more consecutive steps in π.

The contingent in-condition of a plan π = α1; . . . ;αm is defined as

inc(π) =

m�

i=1

�
inc(αi) ∪ inn(αi)

�
\ inn(π).

Finally, we define the necessary and contingent postconditions of a plan. The
necessary postconditions of a plan π = α1; . . . ;αm is defined as

postn(π) = {l | ∃i : l ∈ postn(αi)∧∀j ∈ {i, . . . ,m} :∼ l �∈ postn(αj)∪postc(αj)}.

That is, the necessary postconditions of each step not ‘undone’ by the necessary
or contingent postconditions of later steps. The contingent postcondition of a
plan π = α1; . . . ;αm is defined as postc(π) = post1

c(π) ∪ post2
c(π), where

post1
c(π) = {l | ∃i : l ∈ postc(αi) ∧ ∀j ∈ {i, . . . ,m} :∼ l �∈ postn(αj)}

and
post2

c(π) = {l | ∃i : l ∈ postn(αi) ∧
∃j ∈ {i, . . . ,m} :∼ l ∈ postc(αj) ∧
∀j ∈ {i, . . . ,m} :∼ l �∈ postn(αj)}.

That is, the contingent postcondition of a plan is either a contingent post-
condition of a step that is not ‘undone’ by the necessary postcondition of a later
step, or a necessary postcondition of a step that may be ‘undone’ by a contin-
gent postcondition of a later step. Observe that sets postn(π) and postc(π) are
mutually exclusive by definition.

3.3 Goals

A goal γ is associated with a set of plans π1, . . . , πn that achieve γ, and the pre-,
in- and postconditions of γ are derived from this set of associated plans. For
simplicity, we stipulate that goals with the same GoalType as γ do not appear
in the goal-plan tree rooted at γ.10

10 This is a standard assumption in computing summary information e.g., [7, 8, 16, 15].
The assumption can be relaxed, but the definitions of conditions below become more
complex.

188

The necessary pre-, in- and postconditions of a goal γ associated with plans
π1, . . . , πn is defined as

conn(γ) =
n�

i=1

conn(πi),

where con is either pre, in or post . That is, necessary pre-, in-, or postconditions
must hold respectively before, during, or after all ways of achieving γ.

The contingent pre-, in-, and postconditions of a goal γ associated with plans
π1, . . . , πn is defined as

conc(γ) =

n�

i=1

conc(πi) ∪




n�

j=1

conn(πj) \ conn(γ)




where con is either pre, in or post . That is, a pre-, in-, or postcondition is
contingent for γ if it is a contingent condition of a plan πi to achieve γ, or if it
is a necessary condition for a plan πj but not for γ itself (i.e., it is a necessary
condition of some but not all plans for γ.)

The definitions above capture the relationship between the pre-, in- and
postconditions of actions, plans and goals in a goal-plan tree. The conditions for
actions define which propositions must be true before, during and after either all
executions of an action (necessary conditions), or some execution of the action
(contingent conditions). The conditions for plans define which propositions must
be true before, during and after either all executions of a plan, or some execution
of the plan. The necessary preconditions of a plan specify the states in which the
plan is applicable. The conditions for goals define which propositions must be
true before, during and after either all means of achieving a goal or some means
of achieving a goal.

4 Execution Conditions

In the previous section, we defined the necessary and contingent conditions for
the execution of a single goal-plan tree. In this section, we consider information
relevant to the execution of a set of goal plan trees.

If an agent always executes at most one goal-plan tree at a time, e.g., it ex-
ecutes its intentions in first-in-first-out order, then the execution conditions are
the same as those given in Section 3. However, in many application domains, the
goal-plan trees comprising a system or an agent’s user supplied domain knowl-
edge are executed in parallel. For example, in many BDI agent architectures,
the plans comprising the agent’s intentions are executed in parallel, e.g., by ex-
ecuting one step of an intention at each cycle in a round robin fashion [4, 19].
Interactions between interleaved steps in plans in different goal-plan trees may
result in conflicts, i.e., the execution of a step in one plan makes the execu-
tion of a step in another concurrently executing plan impossible. Given a set of

189

goal-plan trees, the scheduling problem is to determine which step of which goal-
plan tree to execute next, so as to minimise the number of execution conflicts.11

Scheduling aims to minimise the number of plan failures resulting from choices
made by the agent regarding the order of execution of a set of goal-plan trees,
thus allowing the largest number of goals to be achieved.12 Our aim is not to
solve the scheduling problem here; for example, we do not consider the problem
of which plan an agent should adopt for a given (sub)goal—this is the concern
of deliberation scheduling. Rather, we focus on defining conditions that must or
may hold on all possible future executions of a set of goal-plan trees. As such,
the conditions we define should be taken into account by any scheduler, but are
neutral with respect to the actual form of deliberation scheduling adopted. It
turns out that, in our setting, the information relevant for scheduling differs from
the conditions on the well-formedness of a goal-plan tree defined in the previous
section. As such, the definitions below depart from those in, e.g., [15, 14].

To define the execution conditions for a set of goal-plan trees, we need some
auxiliary notions. Given a set of goal-plan trees T = {τ1, . . . , τn}, an execution
context for T is a set of pairs I = {(τ1, ρ1), . . . , (τn, ρn)}, where each ρi defines the
set of possible future execution paths for τi. Each ρi corresponds to the point
execution has reached in the goal-plan tree τi, and hence the possible paths
future execution of τi may follow. (I essentially corresponds to the intentions of
a BDI agent.) Initially, each ρi points to the top-level goal of the corresponding
goal-plan tree τi. As execution of τi proceeds, plans are selected, restricting the
possible future execution paths to a subtree of τi captured by ρi. In the interests
of brevity, and where no confusion can arise, we shall refer to possible future
execution paths simply as possible execution paths.

An initial set of possible execution paths ρ0 for a goal-plan tree τ is a
sequence (πi, α1), . . . , (πi, αk), where πi = α1; . . . ;αk is the selected plan for
the top-level goal of τ . As execution progresses, a set of possible execution
paths ρ = (π1, α1), (π2, α2), . . . , (πm, αm) evolves as follows. The successor set
of possible execution paths ρ� of ρ is (π2, α2), . . . , (πm, αm) if α1 is an action,
and ρ� = (π�

1, α
�
1), . . . , (π

�
1, α

�
n), (π2, α2), . . . , (πm, αm) if α1 is a subgoal γ1 and

π�
1 = α�

1; . . . ;α
�
n is the plan selected for γ1. Only sets of possible execution paths

which are the initial set of possible execution paths in τ (corresponding to the
top-level of goal of τ) or are obtained by the progression step described above
are sets of possible execution paths in τ .

We can now define the necessary and contingent execution conditions of an
execution context. Informally, the necessary execution conditions of a set of

11 Scheduling may also be used to maximise the number of positive interactions between
goal-plan trees, as in, e.g., [16, 2]; we do not consider positive interactions here.

12 Plans may fail for reasons that are outside the control of the agent, e.g., due to
changes in the environment, or actions of other agents violating the conditions of
a plan. Several approaches, e.g., [17, 18, 20] have been proposed which attempt to
avoid such failures. However, the information about goal-plan trees required by these
approaches (essentially the the percentage of world states for which there is some
applicable plan for any subgoal within an intention) is different from that required
for scheduling, and we do not consider them further here.

190

possible execution paths ρi, are those conditions that must hold or be achieved
at some point in all possible future executions of a goal-plan tree τi starting from
ρi, and the contingent execution conditions are those conditions that must hold
or be achieved at some point of time in at least one possible future execution
(but not all executions) of τi starting from ρi. When executing the set of goal-
plan trees in T in parallel, such execution conditions must be protected — if the
execution conditions of two sets of possible execution paths ρi and ρj intersect,
then interleaving steps in ρi and ρj may result in conflicts.

4.1 Actions

As actions are atomic, the necessary and contingent execution conditions of an
action α are identical to the corresponding necessary and contingent conditions
for α (we denote execution conditions with a ∗):

con∗
n(α) = conn(α) con∗

c(α) = conc(α)

where con∗
n and conn are either pre∗

n and pren , in∗
n and inn or post∗n and postn

respectively, and similarly con∗
c and conc are either pre∗

c and prec , in∗
c and inc

or post∗c and postc.

4.2 Plans

The necessary and contingent execution conditions of a plan π differ from the
corresponding necessary and contingent conditions for π. As steps in plans in
different goal-plan trees may be arbitrarily interleaved, we need to protect all
the preconditions in a plan, even if they are established by a preceding step in
the same plan, as the condition may be invalidated by a step in a plan in another
goal-plan tree.

The necessary execution pre-, in- and postcondition of a parallel composition
α = β1� . . . �βk is the union of the necessary execution conditions of each βi, i.e.,

con∗
n(α) =

k�

i=1

con∗
n(βi)

where con∗
n is either pre∗

n , in∗
n or post∗n.

The contingent pre-, in- and post- execution conditions of a parallel compo-
sition is also defined as the union of contingent execution conditions of each βi,
except that we exclude any contingent postcondition literal of a step if it is also
a necessary postcondition of some other step, i.e.,

con∗
c(α) =

k�

i=1

con∗
c(βi) \ con∗

n(α).

The necessary and contingent execution preconditions of a plan (or plan
suffix) π = α1; . . . ;αm are therefore given by

pre∗
n(π) =

m�

i=1

pre∗
n(αi) pre∗

c (π) =
m�

i=1

pre∗
c (αi) \ pre∗

n(π).

191

Similarly, the postconditions of interest are no longer the ‘eventual’ postcon-
ditions of the plan, since the postcondition of an action αi ‘undone’ by a later
step αj , i < j in π may be ‘visible’ to a step in a plan in another goal-plan tree.
The necessary and contingent execution postconditions of π are therefore given
by

post∗n(π) =
m�

i=1

post∗n(αi) post∗c(π) =
m�

i=1

post∗c(αi) \ post∗n(π).

In contrast, the necessary and contingent execution in-conditions of π are
the same as the necessary and contingent in-conditions of π: in∗

n(π) = inn(π),
in∗

c(π) = inc(π). (Since inn(π) and inc(π) define conditions that must hold
between the execution of steps in π, they are unaffected by interleaving of plan
steps.)

4.3 Goals

As with plans, the necessary and contingent execution conditions of a goal γ
associated with plans π1, . . . , πn differ from the corresponding necessary and
contingent conditions for γ. (The conditions of goals are defined in terms of the
conditions of their associated plans.)

The necessary pre-, in- and post- execution conditions of a goal γ associated
with plans π1, . . . , πn is defined as

con∗
n(γ) =

n�

i=1

con∗
n(πi),

where con is either pre, in or post . That is, necessary pre-, in-, or post- execution
conditions must hold respectively before, during, or after all ways of achieving
γ.

The contingent pre-, in-, and post- execution conditions of a goal γ associated
with plans π1, . . . , πn is defined as

con∗
c(γ) =

n�

i=1

con∗
c(πi) ∪




n�

j=1

con∗
n(πj) \ con∗

n(γ)


 ,

where con is either pre, in or post . That is, a pre-, in-, or postcondition is
contingent for γ if it is a contingent condition of a plan πi to achieve γ, or if it
is a necessary condition for a plan πj but not for γ itself (i.e., it is a necessary
condition of some but not all plans for γ.)

4.4 Sets of Execution Paths

We can now define the necessary and contingent execution conditions of a set of
possible execution paths ρ = (π1, α1), . . . , (πk, αk) of a goal-plan tree τ .

192

The necessary execution precondition of a set of possible execution paths ρ
is given by

pre∗
n(ρ) =

k�

i=1

pre∗
n(αi).

That is, we must protect the necessary preconditions of all steps in ρ. The
contingent execution precondition of ρ is given by

pre∗
c (ρ) =

k�

i=1

pre∗
c (αi) \ pre∗

n(ρ).

Contingent preconditions are those that may need to be established during exe-
cution, depending on the choice of plan to achieve a goal.

The necessary execution in-condition of a set of possible execution paths ρ
is given by

in∗
n(ρ) =

k�

i=1

in∗
n(αi) ∪

k�

i=1

inn(πi).

That is, we must protect the in-conditions of all steps in ρ, and in addition we
also need to protect the in-conditions of all currently executing plans in ρ. The
contingent execution in-condition of ρ is given by

in∗
c(ρ) =

k�

i=1

in∗
c(αi) ∪

k�

i=1

inc(πi) \ in∗
n(ρ).

The necessary and contingent execution postconditions of a set of possible
execution paths ρ is given by

post∗n(ρ) =
k�

i=1

post∗n(αi) post∗c(ρ) =
k�

i=1

post∗c(αi) \ post∗n(ρ).

Finally, the necessary execution conditions of a set of possible execution paths
ρ are given by

cond∗
n(ρ) = pre∗

n(ρ) ∪ in∗
n(ρ) ∪ post∗n(ρ),

and the contingent execution conditions of ρ are given by

cond∗
c(ρ) = pre∗

c (ρ) ∪ in∗
c(ρ) ∪ post∗c(ρ).

Conflicts may occur when we have complementary literals in the execution
conditions of two sets of possible execution paths, ρi and ρj , i.e., when

∃ l ∈ cond∗
x(ρi) ∧ ∼ l ∈ cond∗

x(ρj),

where cond∗
x is either cond∗

n or cond∗
c . Clearly, there are different cases. For

example, conflicts between the necessary execution conditions of two execution

193

paths may be a more serious problem than conflicts between contingent execution
conditions.

If no conflicts (as defined above) occur between two sets of possible execu-
tion paths ρi and ρj , then the next step in either (or both) ρi and ρj may be
safely executed. On the other hand, if there are conflicts between the two sets of
possible execution paths, then we could still interleave their execution such that
they do not interfere with one another, e.g., by borrowing techniques from [15].
For example, if the conflict between ρi and ρj is due to complementary literals
in in∗

n(ρi) and post∗n(ρj), then we could delay the execution of ρj until ρi pro-
gresses to a point where there is no longer a conflict with ρj . This is because ρj

might otherwise interfere with the in-condition of a plan that is currently being
pursued.13 If the conflict between ρi and ρj is due to complementary literals in
pre∗

c (ρi) and post∗c(ρj), an optimistic approach would be to first execute ρj until
it progresses to a point where a conflict no longer occurs with ρi, and only then
begin executing ρi. This assumes that either execution of ρj does not actually
bring about the conflicting literal, or that if it is brought about, execution of
ρi is such that the conflicting contingent precondition is not required, or a step
within ρi itself asserts the negation of the conflicting literal.

5 Conclusion and Future Work

This paper has provided definitions of pre-, in-, and postconditions of actions,
plans, and goals, for an extended goal-plan tree that supports the execution of
steps (goals and actions) in parallel, as well as the specification of both determin-
istic and non-deterministic actions. Our definitions essentially capture ‘static’
and ‘dynamic’ notions of conditions, which are derived from the primitive ones
specified within the basic actions that form plans. We believe that ‘static’ prop-
erties defined by our notions will facilitate authoring agent programs, particu-
larly because it is important to know the properties of the individual “building
blocks” (goal-plan trees) that are available when composing a new plan. We have
used our ‘dynamic’ notions of conditions to derive the conditions that must be
protected by any scheduler, when interleaving two or more goal-plan trees.

We foresee two main directions for future work. First, we could allow for a
step in a plan to necessarily invalidate one or more (though not all) ‘descendant’
(sub)plans of a later step, and accordingly extend our notions of the necessary
and contingent postconditions of a plan. This extension would involve identifying
which postconditions in the later step are never asserted due to the conflict (and
are thereby neither necessary nor contingent postconditions), and which ones

13 Note that if ρi and ρj are considered in order of the priority of the associated top-
level goal (or ties are broken arbitrarily), deadlock (as defined in [15, 14]) cannot
arise, even if there are complementary literals in in∗

n(ρj) and post∗n(ρi). However,
this may result in conditions of the lower priority set of possible execution paths
being violated. In such cases, more sophisticated intention scheduling techniques,
e.g., [21, 20] may be able to find an interleaving that protects the conditions of both
sets of possible execution paths.

194

are always asserted due to the conflict, by virtue of certain descendant plans
being always inapplicable. Second, we could explore how to generate a schedule
for interleaving two or more goal-plan trees, while respecting the conditions that
we have identified as needing to be protected.

References

1. James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832–843, 1983.

2. Yuan Yao an Brian Logan and John Thangarajah. Robust Execution of BDI
Agent Programs by Exploiting Synergies Between Intentions. In Proceedings of
the National Conference on Artificial Intelligence (AAAI), page to appear, 2016.

3. Jorge A. Baier, Christian Fritz, and Sheila A. McIlraith. Exploiting procedural
domain control knowledge in state-of-the-art planners. In Proceedings of the In-
ternational Conference on Automated Planning and Scheduling (ICAPS), pages
26–33, 2007.

4. Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming
multi-agent systems in AgentSpeak using Jason. Wiley Series in Agent Technology.
Wiley, 2007.

5. Adi Botea, Markus Enzenberger, Martin Müller, and Jonathan Schaeffer. Macro-
FF: Improving AI planning with automatically learned macro-operators. Journal
of Artificial Intelligence Research (JAIR), 24:581–621, 2005.

6. David Chapman. Planning for conjunctive goals. Artificial Intelligence, 32(3):333–
377, 1987.

7. Bradley J. Clement and Edmund H. Durfee. Theory for coordinating concurrent
hierarchical planning agents using summary information. In Proceedings of the
National Conference on Artificial Intelligence (AAAI), pages 495–502, 1999.

8. Bradley J. Clement, Edmund H. Durfee, and Anthony C. Barrett. Abstract rea-
soning for planning and coordination. Journal of Artificial Intelligence Research
(JAIR), 28:453–515, 2007.

9. Lavindra de Silva, Sebastian Sardina, and Lin Padgham. First Principles Plan-
ning in BDI systems. In Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pages 1105–1112, 2009.

10. Kutluhan Erol, James Hendler, and Dana S. Nau. HTN planning: Complexity and
expressivity. In Proceedings of the National Conference on Artificial Intelligence
(AAAI), pages 1123–1128, 1994.

11. Christian Fritz, Jorge A. Baier, and Sheila A. McIlraith. ConGolog, Sin Trans:
Compiling ConGolog into Basic Action Theories for planning and beyond. In
Proceedings of the International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR), pages 600–610, 2008.

12. Subbarao Kambhampati, Amol Dattatraya Mali, and Biplav Srivastava. Hybrid
planning for partially hierarchical domains. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI), pages 882–888, 1998.

13. Sebastian Sardina, Lavindra de Silva, and Lin Padgham. Hierarchical planning
in BDI agent programming languages: A formal approach. In Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 1001–1008, 2006.

14. John Thangarajah and Lin Padgham. Computationally effective reasoning about
goal interactions. Journal of Automated Reasoning, 47(1):17–56, 2011.

195

15. John Thangarajah, Lin Padgham, and Michael Winikoff. Detecting and avoiding
interference between goals in intelligent agents. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pages 721–726, 2003.

16. John Thangarajah, Lin Padgham, and Michael Winikoff. Detecting and exploiting
positive goal interaction in intelligent agents. In Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages
401–408, 2003.

17. John Thangarajah, Sebastian Sardina, and Lin Padgham. Measuring plan coverage
and overlap for agent reasoning. In Proceedings of the International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS), pages 1049–1056,
2012.

18. Max Waters, Lin Padgham, and Sebastian Sardina. Evaluating coverage based
intention selection. In Proceedings of the International Joint Conference on Au-
tonomous Agents and Multi-agent Systems (AAMAS), pages 957–964, 2014.

19. Michael Winikoff. JACK Intelligent Agents: An Industrial Strength Platform. In
Multi-Agent Programming, pages 175–193. Springer, 2005.

20. Yuan Yao and Brian Logan. Action-level intention selection for BDI agents. In
Proceedings of the International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS), 2016. (to appear).

21. Yuan Yao, Brian Logan, and John Thangarajah. SP-MCTS-based intention
scheduling for BDI agents. In Proceedings of the European Conference on Arti-
ficial Intelligence (ECAI), pages 1133–1134, 2014.

196

Keyword Index

Agent design 149
agent methodology 39
Agent role 104
Agent-Oriented Software Engineering 23, 88
Agent-Oriented-Programming 117
Ambient Intelligence 149
Application framework 104

BDI agents 181
BDI architecture 39
BDI-Agents 117
Belief-Desire-Intention 165

Cognitive architecture 39
Cognitive modelling 39
Commitments 23

Data-aware MAS 23
Declarative approaches to engineering agentsystems 55
Deployment 149

e-Health protocol 71

Goal-driven agents 149
Goal-plan trees 181

Hypoglycemia in newborns 71

Infrastructure 133

JaCaMo 88

Laboratory Resource inter-connectivity 7
Laboratory Resource Multi Agent Systems 7

Middleware 133
Modularity 117
Multi-agent system 104, 149

Namespace 117
Norm-aware MAS 23

Patient monitoring 71
Privacy management 149
Processes and methodologies for MAS development 55
Programming languages 133
Prometheus 88
Protocol 104
Protocol consistency 71
Protocol-Driven Agents 71

Reactive and proactive role 104
Reasoning about plans 181
Robotics agents 133

Smart Agent Enablers 7
Software architectures and design patterns for MAS 55
Summary information 181

Testability 165
Trace expressions 71

Verification and Validation 165

Author Index

Ancona, Davide 71
Atkinson, Katie 7

Baldoni, Matteo 23
Baroglio, Cristina 23
Bordini, Rafael H. 88, 117

Calvanese, Diego 23
Cardoso, Rafael C. 88
Caval, Costin 149
Cheah, Wai Shiang 39
Coenen, Frans 7
Costantini, Stefania 55
Cruz-Ramı́rez, Nicandro 117

De Silva, Lavindra 181
Dignum, Frank 1
Dinont, Cédric 149

El Fallah Seghrouchni, Amal 149

Ferrando, Angelo 71
Formisano, Andrea 55
Freitas, Artur 88

Goddard, Phil 7
Guerra-Hernández, Alejandro 117

Hoyos-Rivera, Guillermo De J. 117
Hübner, Jomi F. 117

Kristensen, Bent Bruun 104

Lazarin, Nilson Mori 133
Logan, Brian 181

Mascardi, Viviana 71
Meyer, John-Jules 39
Micalizio, Roberto 23
Montali, Marco 23

Ortiz-Hernández, Gustavo 117

Pantoja, Carlos 133
Payne, Terry 7
Piette, Ferdinand 149

Riley, Luke 7

Sichman, Jaime 5, 133
Stabile Jr, Márcio 133

Taillibert, Patrick 149
Taveter, Kuldar 39

Vieira, Renata 88

Winikoff, Michael 165

Yao, Yuan 181

